Gå til innhold

Snedige ting du lurer på V.2


Anbefalte innlegg

Videoannonse
Annonse

Det er vel kanskje det at det deles videre til andre som er problemet. Jeg kan ta opp møter på Teams på jobb, men starter jeg å dele det videre så vil jeg fort miste kontroll over hvor infoen havner. Hvorvidt det var noen sensetive opplysninger i den gitte saken som bør skjermes for offentligheten er dog vanskelig å vite. 

Lenke til kommentar
Ronald Ulysses Swanson skrev (12 timer siden):

Det sies at bøter går til statskassen - men hva blir det av disse pengene? Er de øremerket til de som bøtelegger (politi, Konkurransetilsynet etc.) eller går de inn på en egen type konto? Er det enkelte etater som budsjetterer forventet "inntekt" på bøter?

Du kan lese om hvordan bøter inntektsføres i statsbudsjettet. Generelt sett inntektsføres bøter og gebyrer under det departement som har ansvar for saksfeltet, men straffebøter inntektsføres av Finansdepartementet (fordi det er Statens innkrevingssentral som inndriver dem, en etat under Finansdepartementet). 

Økonomiske sanksjoner er ikke øremerket den etaten som ilegger sanksjonen. De går inn i statsbudsjettet, og de er en tilstrekkelig stabil inntekt til at staten i 2020 budsjetterte med 1,4 milliarder kroner i inntekter fra bøter. 

  • Innsiktsfullt 3
Lenke til kommentar
Jotun skrev (34 minutter siden):

Eg har lurt i mange år på åssen mange folk har råd til vesentlig dyrere hus og biler enn meg. 

Tror det handler mest om hvor mye man har lyst å låne... 

Flaks, innsats, prioriteringer.. ;)

Har du flaks så har du kjøpt bolig eller hytte *før* prisene stiger. Eller kanskje du har arvet eller giftet deg til bolig/hytte. OG om du bare har 1 mill i gjeld på huset har du mye mer til overs hver måned enn om du har 5 mill i gjeld.

Kanskje du har mulighet til en bedre betalt jobb, om du er villig til å jobbe for det. Du kan bytte fra offentlig til privat sektor, eller søke opprykk der du er, eller kanskje bare jobbe mye overtid. Det blir mer på konto men du må sannsynligvis 'betale' i form av større innsats og flere timer på jobb.

Dessuten må man jo prioritere. Må du ha den nyeste mobilen, med det feteste abonnementet, netflix, amazon prime, medlemskap på sats, personelig trener, cruise i karibien, kobe-biff til middag? Eller kanskje du kan roe ned det daglige forbruket og heller bruke pengene på den bilen du har lyst på?

  • Liker 1
Lenke til kommentar

Evnen til å kjøpe bolig avhenger jo i stor grad av mye verdier/inntekt foreldrene dine sitter på, evt. arv etter disse. Samt om man er et par som kan kjøpe sammen. Det at det har så innmari mye å si for ditt boligkjøp hva besteforeldrene og foreldrene dine gjorde er etter min mening en av de største bidragene til sosiale forskjeller i Norge i dag. 

  • Liker 3
Lenke til kommentar
Kahuna skrev (18 timer siden):

Flaks, innsats, prioriteringer.. ;)

Har du flaks så har du kjøpt bolig eller hytte *før* prisene stiger. Eller kanskje du har arvet eller giftet deg til bolig/hytte. OG om du bare har 1 mill i gjeld på huset har du mye mer til overs hver måned enn om du har 5 mill i gjeld.

Kanskje du har mulighet til en bedre betalt jobb, om du er villig til å jobbe for det. Du kan bytte fra offentlig til privat sektor, eller søke opprykk der du er, eller kanskje bare jobbe mye overtid. Det blir mer på konto men du må sannsynligvis 'betale' i form av større innsats og flere timer på jobb.

Dessuten må man jo prioritere. Må du ha den nyeste mobilen, med det feteste abonnementet, netflix, amazon prime, medlemskap på sats, personelig trener, cruise i karibien, kobe-biff til middag? Eller kanskje du kan roe ned det daglige forbruket og heller bruke pengene på den bilen du har lyst på?

Ja. Når eg snakket om hus og bil så gjelder det generelt forbruk. Har selvsagt ikke detaljert oversikt, men de samme med hus og bil av øverste klasse har jo ofte et forbruk som ikke ligner noe eg tør ha hvertfall. Men eg lever godt med tanken på at eg nok har en del mer på "bok" enn disse. 

Og enig, den viktigste faktoren er nok gamle penger. 

Endret av Jotun
Lenke til kommentar
SeaLion skrev (22 timer siden):

Noe jeg har fundert mye på i det siste er om π (pi) alltid har den samme verdien, eller om verdien endres i (sterke) gravitasjonsfelt der rommet ikke lengre er flatt. Kan det f.eks tenkes at pi kan bli 3,000 i nærheten av svarte hull?

Den allment aksepterte definisjonen av pi er som en matematisk konstant (3,141592.....), den vil aldri forandres. Pi er forholdet mellom omkrets og diameter i euklidsk geometri. Dette forholdet kan endres i et ikke-euklidsk rom (som er det jeg antar du forutsetter i rom-tids-forvrenging nær sorte hull), men da snakker vi ikke lenger om pi.

disclaimer: jeg opererer her helt i ytterkanten av min kompetanse på feltet, så oppfølgingsspørsmål kan fort forbli ubesvarte?

Lenke til kommentar
Kaplan skrev (7 minutter siden):

Den allment aksepterte definisjonen av pi er som en matematisk konstant (3,141592.....), den vil aldri forandres. Pi er forholdet mellom omkrets og diameter i euklidsk geometri. Dette forholdet kan endres i et ikke-euklidsk rom (som er det jeg antar du forutsetter i rom-tids-forvrenging nær sorte hull), men da snakker vi ikke lenger om pi.

disclaimer: jeg opererer her helt i ytterkanten av min kompetanse på feltet, så oppfølgingsspørsmål kan fort forbli ubesvarte?

Men kanskje noen andre kan svare?

Fra Wikipedia-artikkelen om euklidisk rom:
Sitat

 

Endrer man det euklidske rommet slik at dets indreprodukt blir negativt i en eller flere retninger, får en frem det som kalles pseudoeuklidsk rom. Glatte mangfoldigheter basert på disse rommene kalles pseudoriemannske mangfoldigheter. Deres kanskje mest kjente anvendelse er i relativitetsteorien, hvor materieløst romtid representeres ved et flatt pseudoeuklidsk rom kalt Minkowski-rommet, og hvor romtider med materie representeres ved andre pseudoriemannske mangfoldigheter og tyngdekraften svarer til krumningen av en slik mangfoldighet.
 
Vårt univers, som er underlagt relativitetsteorien, er ikke euklidsk. Dette er avgjørende i teoretiske betraktninger i astronomi og kosmologi, samt i praktiske problemstillinger som global posisjonering og navigasjon av fly. Ikke desto mindre kan en euklidsk modell brukes i løsningen av mange andre problemer med tilstrekkelig presisjon.

 

Så selv ved beregninger av det hjemlige GPS-systemet, som benytter et relavistisk feilrettingssystem for å fungere, er ikke rommet lengre euklidisk, det er krummet. Hadde man ikke kompensert for at tiden går litt saktere nede på bakken enn i GPS-satelittene ville systemet hatt en feilvisning på ca 12 km per døgn.
 
Så la meg justere spørsmålet mitt:
Er summen av vinklene i en trekant fortsatt 180° i et pseudoeuklidisk (relativistisk) rom? Er forholdet mellom en sirkels diameter og dens omkrets fortsatt pi, eller kan forholdet bli en annen verdi i et slikt relativistisk rom?
Lenke til kommentar
SeaLion skrev (36 minutter siden):
Så la meg justere spørsmålet mitt:
Er summen av vinklene i en trekant fortsatt 180° i et pseudoeuklidisk (relativistisk) rom? Er forholdet mellom en sirkels diameter og dens omkrets fortsatt pi, eller kan forholdet bli en annen verdi i et slikt relativistisk rom?

Tja, at summen er 180° gjelder i hvert fall i 2D. Dersom trekanten ligger på et plan som er krummet i 3D, f.eks jordoverflata så kan summen avvike fra 180°. F.eks hvis du tenker 3 flyruter korteste vei mellom 3 punkter på kloden. For enkelhets skyld kan vi tenke oss de tre stedene nordpolen, ekvator ved 0-meridianen og ekvator ved 90° vest. Da får vi en trekant med 3 stk 90-graders vinkler. I et 4D krummet rom vil nok heller ikke 180° regelen gjelde.

Forholdet mellom radie og omkrets kan ikke demonstreres på samme måte, men trenger en overflate uten sirkulær symmetri for å kunne vise at forholdet mellom radie og omkrets ikke er pi på en flate som krummer i 3D-rommet. Tenk f.eks en sirkel rundt et sadelpunkt, der sirkelen krummer med sadelens form. Tilsvarende som med trekanten vil nok også forholdet mellom omkrets og radie avvike fra pi i et 4D krummet rom.

Med andre ord, jeg tror pi bare er gyldig i 2D og i geometrier med sirkulær symmetri i 3D eller 4D. Dvs man kan sikkert finne symmetrier rundt sorte hull også der forholdet mellom omkrets og radie er pi. F.eks en sirkulær bane rundt hullet der radien til hullets senter er konstant. F.eks et foton som går i bane nøyaktig på event-horisonten.

Edit: Merk at summen av vinkler i en trekant som er krummet i 3D alltid blir større enn 180° og at en sirkel som ligger på et plan som krummer i 3D alltid får større forhold mellom omkrets og radie enn pi. Jeg er ikke sikker, men vil anta at det samme gjelder 4D.

Endret av Simen1
  • Liker 1
Lenke til kommentar

I Minkowsk-rom er summen 180 grader, fordi det er et flatt rom. 

Generelt sett behøver ikke summen av vinklene bli 180 grader og forholdet mellom omkrets og diameter er ikke pi. For en gitt geometri er det ikke kjempe vanskelig å regne ut hva forholdet ville blitt for spesifikke sirkler. Feynman lectures har faktisk en del gode illustrasjoner, som jeg har lagt inn under. Disse to sirklene er eksempler på sirkler hvor omkrets ikke er like diameteren ganger pi.

 

f42-13_tc_big.svgz

f42-11_tc_big.svgz

 

Hele kapittelet er tilgjengelig her:  https://www.feynmanlectures.caltech.edu/II_42.html

Det betyr ikke, slik jeg ser på ting, at pi forandre seg. Pi er en konstant som har en gitt definisjon, uavhengig av sirkler i krummet rom. 

 

EDIT: Vi trenger ikke å tenke på 4D. Det gir ingen mening å definere sirkler og trekanter som ikke kan Lorentztransformeres til å ha samme tidskoordinat. Selvfølgelig kan man definere geometriske objekter i høyere dimensjoner, men da vil jeg påstå at de ikke lenger er relevant for denne diskusjonen. 

Endret av Flin
  • Liker 1
Lenke til kommentar
Skavold skrev (4 timer siden):

Hvorfor har det seg at dersom jeg sovner på sofaen på ettermiddagen våkner jeg gjerne ganske klam og svett, mens jeg ikke blir det dersom jeg bare ligger våken og passiv på sofaen?

Har du dyne eller pledd over? Det kan være at du beveger deg mindre, og at det derfor ikke kommer luft til under kroppen. Har du problemet om natten også? Kan i såfall være noe hormonelt eller sykdom.

Lenke til kommentar

Opprett en konto eller logg inn for å kommentere

Du må være et medlem for å kunne skrive en kommentar

Opprett konto

Det er enkelt å melde seg inn for å starte en ny konto!

Start en konto

Logg inn

Har du allerede en konto? Logg inn her.

Logg inn nå
  • Hvem er aktive   0 medlemmer

    • Ingen innloggede medlemmer aktive
×
×
  • Opprett ny...