Gå til innhold

Finnes det bevegelser som går fortere enn lyset?


Anbefalte innlegg

Banefarten til både lite og stort tannhjul er identisk dersom det ene driver det andre. Men vinkelhastigheten til det lille hjulet vil være større enn det store hjulet.

 

Dersom det lille og det store hjulet sitter på samme akse, slik at de har lik vinkelhastighet, da vil banefarten til det store tannhjulet være større enn til det lille tannhjulet.

 

Eller?

Lenke til kommentar
Videoannonse
Annonse

Ja. Jeg tror ingen har problemer med å forstå at et objekt som snurrer vil "ha større og større fart" jo lengre ut man går.

 

Trenger ikke å dra inn kompliserte tanhjul, det er bare å si at 1m ut på en stor skive snurrer du i nær lyshastigheten. Enda lenger ut - går du da kjappere?

 

Som sagt nær uendelig masse vil lenge før dette rive istykker skiven så jeg ser ikke helt poenget.

Lenke til kommentar
Tenker slik: lite tannhjul hvor momentanfarten til et tannhjul begynner å nærme seg c driver et annet tannhjul, som igjen sitter festet på en større enhet som da vil få større momentanfart i ytterste punkt.

 

Siden fart er forflytning i posisjon over tid brukt vil man i en sirkel få fart 0 når den har gått en runde. Derfor bruker vi begrepet banefart, som er buelengde tilbakelagt over tid brukt.

5105600[/snapback]

 

Mulig jeg har misforstått, eller at dette allerede har vært diskutert, men jeg har ikke lest hele tråden. Uansett: Dersom et tannhjul driver et annet tannhjul (på en slik måte at tannhjul 2 roterer raskere enn tannhjul 1), må det vel være slik at når rotasjonshastigheten til tannhjul 1 øker slik at den til tannhjul 2 -> c, blir øking av tannhjul 1 sin hastighet umulig grunnet eksponensiell vekst i energi for tannhjul 2.

Lenke til kommentar

Ja, jeg er enig, gspr.. Bare ville illustrere hva som antakeligvis var ment tidligere i tråden om hvordan tannhjulene måtte stilles opp, ikke om det hadde passet over ens med relativitetsteorien. Siden tid og masse endrer verdier blir det vanskeligere og vanskeligere å få til fartsøkninger, og om vi hadde hatt tilnærmet uendelig energi så hadde allikevel materialet i tannhjulene blitt revet i filler under påkjenningen.

Lenke til kommentar
Dette blir ikke riktig.

5105430[/snapback]

 

Nei, jeg tenkte litt over det nå. Hvis det lille tannhjulet har X omdreiningshastighet på ytterste punkt, vil jo det stor tannhjulet ha lavere omdreiningshastighet. Så det blir motsatt. 1 liten X må rotere mer enn 1 gang for at stor X skal rotere en gang (på ytterste punkt).

 

Edit: Påpeker at det fra første stund ble tydeliggjort at dette ikke lar seg gjøre i praksis.

Endret av anth
Lenke til kommentar
Nei, jeg tenkte litt over det nå. Hvis det lille tannhjulet har X omdreiningshastighet på ytterste punkt, vil jo det stor tannhjulet ha lavere omdreiningshastighet. Så det blir motsatt. 1 liten X må rotere mer enn 1 gang for at stor X skal rotere en gang (på ytterste punkt).

5107523[/snapback]

Et stort og et lite tannhjul som har tenner som står mot hverandre vil alltid ha samme hastighet (m/s) på tennene. De vil riktignok ha forskjellig rotasjonshastighet (rpm) men rpm har vel lite å gjøre med diskusjonen om å få noe til å passere lysets hastgighet (~300.000.000 m/s).

 

Det er mye lettere å se for seg en diger skive (LP) som man spinner opp til så stor hastighet at den ytterste kanten passerer lysets hastighet. (lengre inn på platen trenger ikke å passere lysets hastighet.)

 

For at ikke ytterkanten skal rives i fillebiter av ekstrem g-kraft så må plata ha veldig stor diameter. Hvis vi sier at kraften som virker på ytterkanten kan være 1g (så vi mennesker tåler det finfint) og hastigheten på ytterkanten er 3*10^8 m/s så kan vi regne ut radiusen på skiva fra formelen: r = v^2/a = (3*10^8 m/s)^2)/ 9,81 m/s^2 = ca 9,17*10^15 meter = 0,97 lysår i radius. Siden plata er ca 1 lysår i diameter og ytterkanten farer av gårde med lysets hastighet så vil den bruke ca 2*pi = ~6,28 år per omdreining.

Endret av Simen1
Lenke til kommentar

Det stemmer, men det kalles ikke rotasjonshastigheten. Det kalles hastigheten i et punkt.

 

Rotasjonshastigheten er et mål som sier hvor mange runder noe tar per tidsenhet eller hvor mange tidsenheter det bruker per runde. F.eks. rad/s, Hz, rpm (runder per minutt), opm (omdreininger per minutt), eller minutter per omdreining eller noe sånt. Det kan sikkert være praktisk å bruke en av de siste benevningene i blandt, men det mest korrekte og mest konsekvente er å bruke SI-benevninger som omdreininger per sekund eller sekunder per omdreining.

Endret av Simen1
Lenke til kommentar

Slik jeg ser det:

 

Vinkelhastighet: ° / s, rad / s, e.l.

Rotasjonshastighet: Hz, rpm, opm

Fart: posisjonsendring per tid, altså et nyttesløst begrep dersom man snakker om en sirkel. m / s

Momentanfart: posisjonsendring per tid, der hvor tiden går mot null. m / s

Banefart: strekning tilbakelagt per tid, altså det vi som oftest tenker på som "farten" gjennom en sving. m / s

Lenke til kommentar

Opprett en konto eller logg inn for å kommentere

Du må være et medlem for å kunne skrive en kommentar

Opprett konto

Det er enkelt å melde seg inn for å starte en ny konto!

Start en konto

Logg inn

Har du allerede en konto? Logg inn her.

Logg inn nå
×
×
  • Opprett ny...