Gå til innhold

Menneskeskapte klimaendringer  

74 stemmer

  1. 1. Tror du på menneskeskapte klimaendringer?

    • Ja. Og i valgkampen stemmer jeg på et av de partiene som fokuserer mest på klimapolitikk
    • Ja. Tror litt på det, men dette har ikke noen betydning for valg av parti.
    • Ja. Men jeg tror ikke at politikerne i klimapartiene vil løse noen av disse problemene
    • Kanskje. Men det bryr meg ikke. Jeg stemmer på parti ut i fra andre preferanser.
    • Nei. Og i valgkampen stemmer jeg på de av partiene som fokuserer minst på klimapolitikk
    • Nei. Men jeg utelukker det ikke helt, det har ikke noen betydning for valg av parti.
    • Nei. Og ikke ville politikerne vært de beste til å løse problemet om det var et problem heller
    • Nei. Disse moderne klima-teoriene har blitt en religion som noen tjener grovt med penger på.
    • Likegyldig til spørsmålet. Det kunne ikke brydd meg mindre.
      0
    • Ja, utvilsomt. Men jeg regner med at regjeringen vil gjøre noe for å løse problemene uavhengig av mitt valg av parti


Anbefalte innlegg

Om du vet hva det er, hvorfor spør du meg om en rekke ting er anerkjente tidsskrift, der endel av det ikke er det? Anerkjente tiddskrift/journaler er ett godt forståelig begrep. Har du lest en eneste artikkel i ett anerkjent tidsskrift om klimaforskning?

Spurte deg om hva 'du legger i det'. Jeg spurte ikke 'hva er det?'.

Anyway: Jeg har ikke lest så mange anerkjente tidskrifter om klimaforskning som da underbygger og beviser at det finnes menneskeskapte klimaendringer. Det er også derfor jeg spør om du har noen gode å vise meg.

 

Forskningen ligger klar, vis deg kilder? Prøver du å si at det er vanskelig å finne kilder?

Jeg sier at du snakker mye, om kilder, og om beviser, uten å komme med noe. Jeg vil se de aktuelle som du tenker på, og som du mener er anerkjente osv.

 

 

Om du faktisk er genuint interessert i noe annet enn å mase om dine egne fordommer, så tar det deg liten tid å spore opp kilder.

Det er jo rart at du ikke har kommet med en eneste kilde da, når det tar så kort tid.

Bedre å bare komme med det med en gang. =)

Fordommer? Vel, jeg har bare ingen tro på at politikere eller staten vil ha noen mulighet til å påvirke været.

 

Dette er ikke oppsiktvekkende obskure påstander, det er ting det gjøres masse forskning på. Hvor har du prøvd å finne kilder før siden du ikke har klart det?

 

 

AtW

Her... Jeg har forsøkt å få kilder av de som påstår og påstår, og snakker om kildene som da ikke har kommet med noen kilder for sine påstander. :)
  • Liker 1
Lenke til kommentar
Videoannonse
Annonse

 

Om du vet hva det er, hvorfor spør du meg om en rekke ting er anerkjente tidsskrift, der endel av det ikke er det? Anerkjente tiddskrift/journaler er ett godt forståelig begrep. Har du lest en eneste artikkel i ett anerkjent tidsskrift om klimaforskning?

Spurte deg om hva 'du legger i det'. Jeg spurte ikke 'hva er det?'.

Anyway: Jeg har ikke lest så mange anerkjente tidskrifter om klimaforskning som da underbygger og beviser at det finnes menneskeskapte klimaendringer. Det er også derfor jeg spør om du har noen gode å vise meg.

 

Forskningen ligger klar, vis deg kilder? Prøver du å si at det er vanskelig å finne kilder?

Jeg sier at du snakker mye, om kilder, og om beviser, uten å komme med noe. Jeg vil se de aktuelle som du tenker på, og som du mener er anerkjente osv.

 

 

Om du faktisk er genuint interessert i noe annet enn å mase om dine egne fordommer, så tar det deg liten tid å spore opp kilder.

Det er jo rart at du ikke har kommet med en eneste kilde da, når det tar så kort tid.

Bedre å bare komme med det med en gang. =)

Fordommer? Vel, jeg har bare ingen tro på at politikere eller staten vil ha noen mulighet til å påvirke været.

 

Dette er ikke oppsiktvekkende obskure påstander, det er ting det gjøres masse forskning på. Hvor har du prøvd å finne kilder før siden du ikke har klart det?

 

 

AtW

Her... Jeg har forsøkt å få kilder av de som påstår og påstår, og snakker om kildene som da ikke har kommet med noen kilder for sine påstander. :)

 

 

Jeg legger i det det er, det er ett tydelig begrep, det er ikke noe annet å legge i det. Du spør ikke noen "hva du legger i bil", om noen spør om du eier en bil.

 

Har du lest en eneste artikkel om dette i ett anerkjent tidskrift? Ja eller nei? Om ja, har du ett eller to eksempler på hva du har lest? Du formulerer deg med vilje uklart her, derfor tror jeg du prøver å skjule at du ikke har lest noen.

 

Så du er mao mer opptatt av diskusjonkverrulering enn å faktisk finne ut av ting? Det er nettopp det som er poenget mitt, maset ditt om å få kilder er ett symptom på at du ikke ønsker å finne ut av hva forskningen sier, men du ønsker å bruke det som ett billig diskusjonpoeng. Men om du vil ha referanser du kan lese, så kan du se på referanselista til Wikipedia-siden om Global Warming, som har litt diverse referanser om forskjellige temaer innen feltet, eller du kan se på IPCC4-rapporten, (physical science-delen), om du ikke er enig i oppsummeringen som er gjort her, så er det mengder av referanser du kan se på.

 

AtW

  • Liker 1
Lenke til kommentar

Jeg legger i det det er, det er ett tydelig begrep, det er ikke noe annet å legge i det. Du spør ikke noen "hva du legger i bil", om noen spør om du eier en bil.

Jeg var ute etter din forståelse. Hva du legger i det og mener med det.

Du svarte vel ganske greit på det. Men det er ikke kommet noen eksempler på hva jeg er ute etter og har spurt om.

 

Har du lest en eneste artikkel om dette i ett anerkjent tidskrift? Ja eller nei? Om ja, har du ett eller to eksempler på hva du har lest? Du formulerer deg med vilje uklart her, derfor tror jeg du prøver å skjule at du ikke har lest noen.

Jeg har ikke lest noen. Er det så vanskelig å komme med noe jeg spør om?

Du sier jo at du har svært gode kilder, og så spør jeg om du kan vise til det.

Er dette det samme som å forsøke å sjule at jeg ikke har lest noen?

Det jeg har lest er noen få artikler på forskning.no så har jeg sett på litt i den linken jeg har postet i TS.

 

Så du er mao mer opptatt av diskusjonkverrulering enn å faktisk finne ut av ting?

Er jo du som ser ut til å være dette, i og med at du ikke kommer med de kildene og journalene som du påstår å sitte på, men som du ikke vil dele med meg og andre her inne, på direkte spørsmål. Jeg vil ha noe konkret, fra deg...

Jeg vil ha de kildene du tenker på. Det er vel sikkert flere. Og de jeg finner kan være noe du ikke anerkjenner som bra kilde, osv.

 

 

Det er nettopp det som er poenget mitt, maset ditt om å få kilder er ett symptom på at du ikke ønsker å finne ut av hva forskningen sier, men du ønsker å bruke det som ett billig diskusjonpoeng.

Kan det være fordi du ikke har lest noe selv om dette, at det ender opp med bare snakk fra den kanten?

 

 

Men om du vil ha referanser du kan lese, så kan du se på referanselista til Wikipedia-siden om Global Warming, som har litt diverse referanser om forskjellige temaer innen feltet, eller du kan se på IPCC4-rapporten, (physical science-delen), om du ikke er enig i oppsummeringen som er gjort her, så er det mengder av referanser du kan se på.

 

AtW

Wikipedia... Du er nå søt også da. :)

Kom med noen anerkjente journaler nå, i stedet for å oppfordre meg til å gå på wikipedia å rote der. :)

  • Liker 1
Lenke til kommentar

Sier ordet "referanseliste" deg noe? Jeg ba deg sjekke referanslista på wikipedia-artikkelen. Og det framstår som mildt latterlig å klage over wikipedia som kilde generelt (uten at den var brukt som det i dette tilfellet), når du selv antakelig ikke vet særlig om emnet eller har lest en eneste artikkel om det. Om det er tyngre artikler du vil ha er det plenty i referanselista til wiki-artikkelen og IPCC-rapporten som jeg skrev, ikke kom her å lat som det ikke er det. Du trenger ikke å lese "mine" kilder, du trenger bare å se på de anerkjente kildene hva de sier, ikke hør på meg, hør på forskningen.

 

AtW

Endret av ATWindsor
  • Liker 2
Lenke til kommentar

Sier ordet "referanseliste" deg noe? Jeg ba deg sjekke referanslista på wikipedia-artikkelen. Og det framstår som mildt latterlig å klage over wikipedia som kilde generelt (uten at den var brukt som det i dette tilfellet), når du selv antakelig ikke vet særlig om emnet eller har lest en eneste artikkel om det. Om det er tyngre artikler du vil ha er det plenty i referanselista til wiki-artikkelen og IPCC-rapporten som jeg skrev, ikke kom her å lat som det ikke er det. Du trenger ikke å lese "mine" kilder, du trenger bare å se på de anerkjente kildene hva de sier, ikke hør på meg, hør på forskningen.

 

AtW

Jeg vil ha et eksempel fra deg som da underbygger dine påstander i denne debatten. En god en.

Du har snakket mye i denne tråden, men det har ikke kommet noen direkte link til en journal du har snakket så varmt om. Så må du være klar på hva slags argument eller påstand fra meg som er feil, og forklare hvorfor osv.

 

  • Liker 1
Lenke til kommentar

 

Sier ordet "referanseliste" deg noe? Jeg ba deg sjekke referanslista på wikipedia-artikkelen. Og det framstår som mildt latterlig å klage over wikipedia som kilde generelt (uten at den var brukt som det i dette tilfellet), når du selv antakelig ikke vet særlig om emnet eller har lest en eneste artikkel om det. Om det er tyngre artikler du vil ha er det plenty i referanselista til wiki-artikkelen og IPCC-rapporten som jeg skrev, ikke kom her å lat som det ikke er det. Du trenger ikke å lese "mine" kilder, du trenger bare å se på de anerkjente kildene hva de sier, ikke hør på meg, hør på forskningen.

 

AtW

Jeg vil ha et eksempel fra deg som da underbygger dine påstander i denne debatten. En god en.

Du har snakket mye i denne tråden, men det har ikke kommet noen direkte link til en journal du har snakket så varmt om. Så må du være klar på hva slags argument eller påstand fra meg som er feil, og forklare hvorfor osv.

 

 

 

Jeg har gitt deg lange referanselister som underbygger at konsensus blant forskere er at det er menneskeskapt global oppvarming på gang, eller forstår du ikke hva en referanseliste er? Er du virkelig opptatt av å finne ut av hva forskningen sier, eller er du opptatt den latterlige kranglingen din? Hva med dette oppkommet av kunnskap er det som ikke er godt nok for deg? En direkte lenke til en Journal? Vil du har navnet på en anerkjent journal?

 

Hør her turbonello; Har kutter jeg til sakens kjerne: Du kan nesten ingenting om det, du har pga politikk bestemt det for hva du ønsker og tror er riktig, og du er arrogant nok til å mene at folk som bruker livet sitt til å forske på dette tar feil.

 

Du later som du er interessert i å finne ut av det, men du er ikke det fnugg interessert i å ta til det data om dette, om du ikke er fornøyd med å bare anta at konsensus er rett, du kan som ett utgangspunkt lese IPCC-rapporten sin vitenskaplige del, som gir en grei oversikt og ett greit utgangspunkt. Men det kommer du selvsagt ikke til å gjøre, fordi du ikke er interessert i fakta, du er interessert i å underbygge ting som støtter opp om den politiske ideologien som du støtter. Det hele er ett latterlige skue.

 

Om du mener det er feil TA DEG SAMMEN og les litt om temaet på egenhånd, informasjonen er lett tilgjengelig, jeg har vist deg hvor.

 

AtW

Endret av ATWindsor
  • Liker 3
Lenke til kommentar

 

Hadde ikke til intensjon å latterliggjøre noen eller noe som helst.

 

Vennligst forklar din intensjon. Du presentert ingen argument så det blir meget vanskelig å vite. Saklig debatt angriper argumentet ikke personen og sin kunnskap.

 

Du er inne på sakens kjerne hva angår debatten rundt klimahysteriet.

Det dagligdagse bruken av ordet Teori er noe helt annet en begrepet vitenskapelig teori, før noe kan kalles for en teori er dette en hypotese. "Status" som teori kommer ikke før hypotesen er testet nok. Bevismengden avhenger da selvfølgelig av omfanget av hypotesens påstander.

IPCC's klima hypotese er støttet av beviset at temperaturen har steget noe i takt med C02 konsentrasjonen i atmosferen og av at C02 er en Klimagass.

Dette er et noe tynt grunnlag for å kalle dette en vitenskapelig teori mener nå jeg..

Enig, dette er ingen "vitenskapelig teori", men vi diskuterer oss ikke som forskere og bruker ordet på en annen måte som legmenn.

Lenke til kommentar

 

*snipp*

Igjen et svar uten et snev av hva jeg spurte om.

Lettvinnt å påstå alt det du har påstått i denne debatten, for så å bare søke på Global Warming, på google, for så å klikke deg inn på wikipedia og komme tilbake hit å peke på en refferanseliste der... Og late som om du har vunnet debatten, osv.

 

Du har sannsynligvis ikke sett på noe av det selv...

Jeg ser ikke noen grunn til videre snikksnakk med deg, for jeg får ikke noen linker til noen journal eller liknende som du har snakket så varmt om...

 

Og ikke kom med det pisset der om at jeg bare er interessert i å underbygge ting som støtter opp om min politiske ideologi. You see, min ideologi er ikke avhengig av dette.

Tror du det tror du svært feil. Om det er noe sånt som menneskeskapte klimaendringer, så er min ideologi bedre enn din også her, slik jeg ser det...

Endret av turbonello
  • Liker 1
Lenke til kommentar

 

 

*snipp*

Igjen et svar uten et snev av hva jeg spurte om.

Lettvinnt å påstå alt det du har påstått i denne debatten, for så å bare søke på Global Warming, på google, for så å klikke deg inn på wikipedia og komme tilbake hit å peke på en refferanseliste der... Og late som om du har vunnet debatten, osv.

 

Du har sannsynligvis ikke sett på noe av det selv...

Jeg ser ikke noen grunn til videre snikksnakk med deg, for jeg får ikke noen linker til noen journal eller liknende som du har snakket så varmt om...

 

Og ikke kom med det pisset der om at jeg bare er interessert i å underbygge ting som støtter opp om min politiske ideologi. You see, min ideologi er ikke avhengig av dette.

Tror du det tror du svært feil. Om det er noe sånt som menneskeskapte klimaendringer, så er min ideologi bedre enn din også her, slik jeg ser det...

 

 

Det har ingenting med å vinne debatten å gjøre, det er ett godt utgangpunkt om man vil sette seg dypere inn i materien, at det er enkelt å finne fram referanser er sant, det er enkelt, det er forsket ganske mye på det. Les IPCC-rapporten da, om du ikke liker wikipedia sine refranser.

 

Du viser nok engang at du er totalt uinteressert i å ta til deg informasjon om dette, du er ikke nysgjerrig på hva vitenskapen sier, eller opptatt av å finne sannheten, du er interessert i å "vinne en debatt"

 

Bare sånn for å feie vekk den tøvete påstanden din om at det som hindrer deg er at du må gå ett ekestre museklikk, så poster jeg her listen over referanser for klimamodellering her i tråden

 

 

 

Abramopoulos, F., C. Rosenzweig, and B. Choudhury, 1988: Improved
ground hydrology calculations for global climate models (GCMs): Soil
water movement and evapotranspiration. J. Clim., 1, 921–941.
Achatz, U., and J.D. Opsteegh, 2003: Primitive-equation-based low-order
models with seasonal cycle, Part II: Application to complexity and
nonlinearity of large-scale atmospheric dynamics. J. Atmos. Sci., 60,
478–490.
AchutaRao, K., and K.R. Sperber, 2002: Simulation of the El Niño
Southern Oscillation: Results from the coupled model intercomparison
project. Clim. Dyn., 19, 191–209.
AchutaRao, K., and K.R. Sperber, 2006: ENSO simulation in coupled
ocean-atmosphere models: Are the current models better? Clim. Dyn.,
27, 1–15.
AchutaRao, K., et al., 2004: An Appraisal of Coupled Climate Model
Simulations. UCRL-TR-202550, Lawrence Livermore National
Laboratory, Livermore, CA, 197 pp.
Alexander, M.A., et al., 2004: The atmospheric response to realistic Arctic
sea ice anomalies in an AGCM during winter. J. Clim., 17, 890–905.
Alexeev, V.A., 2003: Sensitivity to CO2 doubling of an atmospheric GCM
coupled to an oceanic mixed layer: a linear analysis. Clim. Dyn., 20,
775–787.
Alexeev, V.A., P.L. Langen, and J.R. Bates, 2005: Polar amplifi cation
of surface warming on an aquaplanet in “ghost forcing” experiments
without sea ice feedbacks. Clim. Dyn., 24, 655–666.
Alexeev, V.A., et al., 1998: Modelling of the present-day climate by the
INM RAS atmospheric model “DNM GCM”. Institute of Numerical
Mathematics, Moscow, Russia, 200 pp.
Allan, R.P., and A. Slingo, 2002: Can current climate forcings explain the
spatial and temporal signatures of decadal OLR variations? Geophys.
Res. Lett., 29(7), 1141, doi:10.1029/2001GL014620.
Allan, R.P., V. Ramaswamy, and A. Slingo, 2002: A diagnostic analysis
of atmospheric moisture and clear-sky radiative feedback in the Hadley
Centre and Geophysical Fluid Dynamics Laboratory (GFDL) climate
models. J. Geophys. Res., 107(D17), 4329, doi:10.1029/2001JD001131.
Allan, R.P., M.A. Ringer, and A. Slingo, 2003: Evaluation of moisture
in the Hadley Centre Climate Model using simulations of HIRS water
vapour channel radiances. Q. J. R. Meteorol. Soc., 129, 3371–3389.
Allan, R.P., M.A. Ringer, J.A. Pamment, and A. Slingo, 2004: Simulation
of the Earth’s radiation budget by the European Centre for Medium
Range Weather Forecasts 40-year Reanalysis (ERA40). J. Geophys. Res.,
109, D18107, doi:10.1029/2004JD004816.
Allen, M.R., and W.J. Ingram, 2002: Constraints on future changes in
climate and the hydrologic cycle. Nature, 419, 224–231.
Alley, R.B., et al., 2002: Abrupt Climate Changes: Inevitable Surprises.
National Research Council, National Academy Press, Washington, DC,
221 pp.
Alves, O., M.A. Balmaseda, D. Anderson, and T. Stockdale, 2004:
Sensitivity of dynamical seasonal forecast to ocean initial conditions. Q.
J. R. Meteorol. Soc., 130, 647–667.
Amundrud, T.L., H. Mailing, and R.G. Ingram, 2004: Geometrical
constraints on the evolution of ridged sea ice. J. Geophys. Res., 109,
C06005, doi:10.1029/2003JC002251.
Annamalai, H., K. Hamilton, and K.R. Sperber, 2007: South Asian summer
monsoon and its relationship with ENSO in the IPCC AR4 simulations.
J. Clim., 20, 1071-1083.
Annan, J.D., J.C. Hargreaves, N.R. Edwards, and R. Marsh, 2005a:
Parameter estimation in an intermediate complexity Earth System Model
using an ensemble Kalman fi lter. Ocean Modelling, 8, 135–154.
Annan, J.D., et al., 2005b: Effi ciently constraining climate sensitivity with
palaeoclimate observations. Scientifi c Online Letters on the Atmosphere,
1, 181–184.
Arakawa, A., 2004: The cumulus parameterization problem: Past, present,
and future. J. Clim., 17, 2493–2525.
Arakawa, A., and W.H. Schubert, 1974: Interaction of a cumulus cloud
ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31,
674–701.
Arora, V.K., 2001: Assessment of simulated water balance for continentalscale
river basins in an AMIP 2 simulation. J. Geophys. Res., 106,
14827–14842.
Arora, V.K., and G.J. Boer, 2003: A representation of variable root
distribution in dynamic vegetation models. Earth Interactions, 7, 1–19.
Arzel, O., T. Fichefet, and H. Goosse, 2006: Sea ice evolution over the
20th and 21st centuries as simulated by the current AOGCMs. Ocean
Modelling, 12, 401–415.
Babko, O., D.A. Rothrock, and G.A. Maykut, 2002: Role of rafting in the
mechanical redistribution of sea ice thickness. J. Geophys. Res., 107,
3113, doi:10.1029/1999JC000190.
Baldwin, M.P., et al., 2001: The quasi-biennial oscillation. Rev. Geophys.,
39, 179–229.
Baldwin, M.P., et al., 2003: Stratospheric memory and skill of extendedrange
weather forecasts. Science, 301, 636–640.
Balmaseda, M.A., M.K. Davey, and D.L.T. Anderson, 1995: Decadal and
seasonal dependence of ENSO prediction skill. J. Clim., 8, 2705–2715.
Barkstrom, B., et al., 1989: Earth Radiation Budget Experiment (ERBE)
archival and April 1985 results. Bull. Am. Meteorol. Soc., 70, 1254–
1262.
Barnett, T.P., et al., 1999: Origins of midlatitude Pacifi c decadal variability.
Geophys. Res. Lett., 26, 1453–1456.
Bates, J.J., and D.L. Jackson, 2001: Trends in upper-tropospheric humidity.
Geophys. Res. Lett., 28, 1695–1698.
Bauer, M., and A.D. Del Genio, 2006: Composite analysis of winter
cyclones in a GCM: Infl uence on climatological humidity. J. Clim., 19,
1652–1672. .
Bauer, M., A.D. Del Genio, and J.R. Lanzante, 2002: Observed and
simulated temperature humidity relationships: sensitivity to sampling
and analysis. J. Clim., 15, 203–215.
Bell, T.L., M.-D. Chou, R.S. Lindzen, and A.Y. Hou, 2002: Comments
on “Does the Earth have an adaptive infrared iris?” Reply. Bull. Am.
Meteorol. Soc., 83, 598–600.
Bengtsson, L.K., I. Hodges, and E. Roeckner, 2006: Storm tracks and
climate change. J. Clim., 19, 3518–3543.
Bernie, D., S.J. Woolnough, J.M. Slingo, and E. Guilyardi, 2005: Modelling
diurnal and intraseasonal variability of the ocean mixed layer. J. Clim.,
15, 1190–1202.
Bitz, C.M., and W.H. Lipscomb, 1999: An energy-conserving
thermodynamic sea ice model for climate study. J. Geophys. Res., 104,
15669–15677.
Bitz, C.M., G. Flato, and J. Fyfe, 2002: Sea ice response to wind forcing
from AMIP models. J. Clim., 15, 523–535.
Bitz, C.M., M.M., Holland, A.J. Weaver, and M. Eby, 2001: Simulating the
ice-thickness distribution in a coupled climate model. J. Geophys. Res.,
106, 2441–2463.
Blankenship, C.B., and T.T Wilheit, 2001: SSM/T-2 measurements of
regional changes in three-dimensional water vapour fi elds during ENSO
events. J. Geophys. Res., 106, 5239–5254.
Bleck, R., 2002: An oceanic general circulation model framed in hybrid
isopycnic-Cartesian coordinates. Ocean Modelling, 4, 55–88.
Bleck, R., C. Rooth, D. Hu, and L.T. Smith, 1992: Salinity-driven
thermocline transients in a wind- and thermohaline-forced isopycnic
coordinate model of the North Atlantic. J. Phys. Oceanogr., 22, 1486–
1505.
Boer, G.J., and B. Yu, 2003: Climate sensitivity and climate state. Clim.
Dyn., 21, 167–176.
Bonan, G.B., 1998: The land surface climatology of the NCAR land
surface model (LSM 1.0) coupled to the NCAR Community Climate
Model (CCM3). J. Clim., 11, 1307–1326.
Bonan, G.B., K.W. Oleson, M. Vertenstein, and S. Levis, 2002: The land
surface climatology of the Community Land Model coupled to the NCAR
Community Climate Model. J. Clim., 15, 3123–3149.
Böning, C.W., et al., 1995: An overlooked problem in model simulations
of the thermohaline circulation and heat transports in the Atlantic Ocean.
J. Clim., 8, 515–523.
Bony, S., and K.A. Emanuel, 2001: A parameterization of the cloudiness
associated with cumulus convection: Evaluation using TOGA COARE
data. J. Atmos. Sci., 58, 3158–3183.
Bony, S., and J.-L. Dufresne, 2005: Marine boundary-layer clouds at the
heart of tropical cloud feedback uncertainties in climate models. Geophys.
Res. Lett., 32(20), L20806, doi:10.1029/2005GL023851.
Bony, S., and K.A. Emanuel, 2005: On the role of moist processes
in tropical intraseasonal variability: cloud-radiation and moistureconvection
feedbacks. J. Atmos. Sci., 62, 2770–2789.
Bony, S., K.-M. Lau, and Y.C. Sud, 1997: Sea surface temperature and
large-scale circulation infl uences on tropical greenhouse effect and cloud
radiative forcing. J. Clim., 10, 2055–2077.
Bony, S., et al., 2004: On dynamic and thermodynamic components of
cloud changes. Clim. Dyn., 22, 71–86.
Bony, S., et al., 2006: How well do we understand and evaluate climate
change feedback processes? J. Clim., 19, 3445–3482.
Boone, A., V. Masson, T. Meyers, and J. Noilhan, 2000: The infl uence of the
inclusion of soil freezing on simulations by a soil-vegetation-atmosphere
transfer scheme. J. Appl. Meteorol., 39(9), 1544–1569.
Boone, A., et al., 2004: The Rhone-Aggregation land surface scheme
intercomparison project: An overview. J. Clim., 17, 187–208.
Boville, B.A., and W.J. Randel, 1992: Equatorial waves in a stratospheric
GCM: Effects of resolution. J. Atmos. Sci., 49, 785–801.
Bowling, L.C., et al., 2003: Simulation of high latitude hydrological
processes in the Torne-Kalix basin: PILPS Phase 2(e) 1: Experiment
description and summary intercomparisons. Global Planet. Change, 38,
1–30.
Boyle, J.S., et al., 2005: Diagnosis of Community Atmospheric Model
2 (CAM2) in numerical weather forecast confi guration at Atmospheric
Radiation Measurement (ARM) sites. J. Geophys. Res., 110, doi:10.1029/
2004JD005042.
Branstetter, M.L., 2001: Development of a Parallel River Transport
Algorithm and Application to Climate Studies. PhD Dissertation,
University of Texas, Austin, TX.
Briegleb, B.P., et al., 2004: Scientifi c Description of the Sea Ice Component
in the Community Climate System Model, Version Three. Technical Note
TN-463STR, NTIS #PB2004-106574, National Center for Atmospheric
Research, Boulder, CO, 75 pp.
Broccoli, A.J., N.-C. Lau, and M.J. Nath, 1998: The cold ocean-warm land
pattern: Model simulation and relevance to climate change detection. J.
Clim., 11, 2743–2763.
Broecker, W.S., 1997: Thermohaline circulation, the Achilles heel of our
climate system: will man-made CO2 upset the current balance? Science,
278, 1582–1588.
Brogniez, H., R. Roca, and L. Picon, 2005: Evaluation of the distribution
of subtropical free tropospheric humidity in AMIP-2 simulations using
METEOSAT water vapour channel data. Geophys. Res. Lett., 32, L19708,
doi:10.1029/2005GL024341.
Brovkin, V., et al., 2002: Carbon cycle, vegetation and climate dynamics
in the Holocene: Experiments with the CLIMBER-2 model. Global
Biogeochem. Cycles, 16(4), 1139, doi:10.1029/2001GB001662.
Brovkin, V., et al., 2006: Biogeophysical effects of historical land cover
changes simulated by six Earth system models of intermediate complexity.
Clim. Dyn., 26, 587–600, doi:10.1007/s00382-005-0092-6.
Bryan, F.O., et al., 2006: Response of the North Atlantic thermohaline
circulation and ventilation to increasing carbon dioxide in CCSM3. J.
Clim., 19, 2382–2397.
Burke, E.J., S.J. Brown, and N. Christidis, 2006: Modelling the recent
evolution of global drought and projections for the 21st century with the
Hadley Centre climate model. J. Hydrometeorol., 7, 1113–1125.
Cai, M., 2005: Dynamical amplifi cation of polar warming. Geophys. Res.
Lett., 32, L22710, doi:10.1029/2005GL024481.
Cai, W.J., and P.H. Whetton, 2000: Evidence for a time-varying pattern of
greenhouse warming in the Pacifi c Ocean. Geophys. Res. Lett., 27(16),
2577–2580.
Cai, W.J., P.H. Whetton, and D.J. Karoly, 2003: The response of the
Antarctic Oscillation to increasing and stabilized atmospheric CO2. J.
Clim., 16, 1525–1538.
Calov, R., et al., 2002: Large-scale instabilities of the Laurentide ice sheet
simulated in a fully coupled climate-system model. Geophys. Res. Lett.,
29(24), 2216, doi:10.1029/2002GL016078.
Calov, R., et al., 2005: Transient simulation of the last glacial inception.
Part I: Glacial inception as a bifurcation of the climate system. Clim.
Dyn., 24(6), 545–561.
Camargo, S., A.G. Barnston, and S.E. Zebiak, 2005: A statistical assessment
of tropical cyclone activity in atmospheric general circulation models.
Tellus, 57A, 589–604.
Carnell, R., and C. Senior, 1998: Changes in mid-latitude variability due
to increasing greenhouse gases and sulphate aerosols. Clim. Dyn., 14,
369–383.
Cassou, C., L. Terray, J.W. Hurrell, and C. Deser, 2004: North Atlantic
winter climate regimes: Spatial asymmetry, stationarity with time, and
oceanic forcing. J. Clim., 17, 1055–1068.
Castanheira, J.M., and H.-F. Graf, 2003: North Pacifi c–North Atlantic
relationships under stratospheric control? J. Geophys. Res., 108, 4036,
doi:10.1029/2002JD002754.
Cattle, H., and J. Crossley, 1995: Modelling Arctic climate change. Philos.
Trans. R. Soc. London Ser. A, 352, 201–213.
Cess, R.D., 1975: Global climate change: an investigation of atmospheric
feedback mechanisms. Tellus, 27, 193–198.
Cess, R.D., et al., 1989: Interpretation of cloud-climate feedback as
produced by 14 atmospheric general circulation models. Science, 245,
513–516.
Chambers, L.H., B. Lin, and D.F. Young, 2002: Examination of new CERES
data for evidence of tropical Iris feedback. J. Clim., 15, 3719–3726.
Chang, F.-L., and Z. Li, 2005: A comparison of the global surveys of
high, mid and low clouds from satellite and general circulation models.
In: Proceedings of the Fifteenth Atmospheric Radiation Measurement
(ARM) Science Team Meeting, Daytona Beach, Florida, 14–18 March
2005. Atmospheric Radiation Measurement Program, US Department of
conf15/
Chapman, W.L., and J. E. Walsh, 2007: Simulations of arctic temperature
and pressure by global coupled models. J. Clim., 20, 609-632.
Chen, D., S.E. Zebiak, A.J. Busalacchi, and M.A. Cane, 1995: An improved
procedure for El Niño forecasting. Science, 269, 1699–1702.
Chen, J., B.E. Carlson, and A.D. Del Genio, 2002: Evidence for
strengthening of the tropical general circulation in the 1990s. Science,
295, 838–841.
Chen, T.-C., and J.-H. Yoon, 2002: Interdecadal variation of the North
Pacifi c wintertime blocking. Mon. Weather Rev., 130, 3136–3143.
Chin, M., et al., 2002: Tropospheric aerosol optical thickness from
GOCART model and comparisons with satellite and sun photometer
measurements. J. Atmos. Sci., 59, 461–483.
Chou, M.-D., R.S. Lindzen, and A.Y. Hou, 2002: Reply to: “Tropical cirrus
and water vapor: An effective Earth infrared iris feedback?”. Atmos.
Chem. Phys., 2, 99–101.
Chung, E.S., B.J. Sohn, and V. Ramanathan, 2004: Moistening processes in
the upper troposphere by deep convection: a case study over the tropical
Indian Ocean. J. Meteorol. Soc. Japan, 82, 959–965.
Church, J.A., et al., 2001: Changes in sea level. In: Climate Change 2001:
The Scientifi c Basis. Contribution of Working Group I to the Third
Assessment Report of the Intergovernmental Panel on Climate Change
[Houghton, J.T., et al. (eds.)]. Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, pp. 663–693.
Clark, P.U., N.G. Pisias, T.F. Stocker, and A.J. Weaver, 2002: The role
of the thermohaline circulation in abrupt climate change. Nature, 415,
863–869.
Claussen, M., 1998: On multiple solutions of the atmosphere-vegetation
system in present-day climate. Global Change Biol., 4, 549–559.
Claussen, M., 2005: Table of EMICs (Earth System Models of Intermediate
Complexity). PIK Report 98, Potsdam-Institut für Klimafolgenforschung,
Potsdam, Germany, 55 pp, http://www.pik-potsdam.de/emics.
Claussen, M., et al., 2002: Earth system models of intermediate complexity:
closing the gap in the spectrum of climate system models. Clim. Dyn., 18,
579–586.
Collins, M., S.F.B. Tett, and C. Cooper, 2001: The internal climate
variability of HadCM3, a version of the Hadley Centre coupled model
without fl ux adjustments. Clim. Dyn., 17, 61–81.
Collins, M., D. Frame, B. Sinha, and C. Wilson, 2002: How far ahead could
we predict El Niño? Geophys. Res. Lett., 29(10), 1492, doi:10.1029/
2001GL013919.
Collins, W.D., et al., 2004: Description of the NCAR Community
Atmosphere Model (CAM3.0). Technical Note TN-464+STR, National
Center for Atmospheric Research, Boulder, CO, 214 pp.
Collins, W.D., et al., 2006: The Community Climate System Model:
CCSM3. J. Clim., 19, 2122–2143.
Colman, R.A., 2001: On the vertical extent of atmospheric feedbacks.
Clim. Dyn., 17, 391–405.
Colman, R.A., 2003a: A comparison of climate feedbacks in general
circulation models. Clim. Dyn., 20, 865–873.
Colman, R.A., 2003b: Seasonal contributions to climate feedbacks. Clim.
Dyn., 20, 825–841.
Colman, R.A., 2004: On the structure of water vapour feedbacks in climate
models. Geophys. Res. Lett., 31, L21109, doi:10.1029/2004GL020708.
Cook, K.H., and E.K. Vizy, 2006: Coupled model simulations of the West
African monsoon system: 20th century simulations and 21st century
predictions. J. Clim., 19, 3681–3703.
Cox, P., 2001: Description of the “TRIFFID” Dynamic Global
Vegetation Model. Technical Note 24, Hadley Centre, United Kingdom
Meteorological Offi ce, Bracknell, UK.
Cox, P.M., et al., 1999: The impact of new land surface physics on the GCM
simulation of climate and climate sensitivity. Clim. Dyn., 15, 183–203.
Cox, P.M., et al., 2000: Acceleration of global warming due to carboncycle
feedbacks in a coupled climate model. Nature, 408, 184–187.
Cox, P.M., et al., 2004: Amazonian forest dieback under climate-carbon
cycle projections for the 21st century. Theor. Appl. Climatol., 78, 137–
156, doi:10.1007/s00704-004-0049-4.
Cramer, W., et al., 2001: Global response of terrestrial ecosystem structure
and function to CO2 and climate change: results from six dynamic global
vegetation models. Global Change Biol., 7, 357–373.
Crucifi x, M., 2005: Carbon isotopes in the glacial ocean: A model study.
Paleoceanography, 20, PA4020, doi:10.1029/2005PA001131.
Crucifi x, M., and A. Berger, 2002: Simulation of ocean–ice sheet
interactions during the last deglaciation. Paleoceanography, 17(4), 1054,
doi:10.1029/2001PA000702.
Crucifi x, M., et al., 2002: Climate evolution during the Holocene: A study
with an Earth system model of intermediate complexity. Clim. Dyn., 19,
43–60, doi:10.10007/s00382-001-0208-6.
CSMD (Climate System Modeling Division), 2005: An introduction to the
fi rst general operational climate model at the National Climate Center.
Advances in Climate System Modeling, 1, National Climate Center,
China Meteorological Administration, 14 pp (in English and Chinese).
Cubasch, U., et al., 2001: Projections of future climate changes. In: Climate
Change 2001: The Scientifi c Basis. Contribution of Working Group I to
the Third Assessment Report of the Intergovernmental Panel on Climate
Change [Houghton, J.T., et al. (eds.)]. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, pp. 525–582.
da Silva, A.M., C.C. Young, and S. Levitus, 1994: Atlas of Surface
Marine Data 1994, NOAA Atlas NESDIS 6. NOAA/NESDIS E/OC21 (6
Volumes). US Department of Commerce, National Oceanographic Data
Center, User Services Branch, Washington, DC.
Dai, A., 2006: Precipitation characteristics in eighteen coupled climate
models. J. Clim., 19, 4605–4630.
Dai, A., K.E. Trenberth, and T. Qian, 2004: A global data set of Palmer
Drought Severity Index for 1870-2002: Relationship with soil moisture
and effects of surface warming. J. Hydrometeorol., 5, 1117–1130. PDSI
Danabasoglu, G., J.C. McWilliams, and P.R. Gent, 1995: The role of
mesoscale tracer transports in the global ocean circulation. Science, 264,
1123–1126.
D’Andrea, F., et al., 1998: Northern Hemisphere atmospheric blocking as
simulated by 15 atmospheric general circulation models in the period
1979–1988. Clim. Dyn., 14(6), 385–407.
Dargaville, R.J., et al., 2002: Evaluation of terrestrial carbon cycle models
with atmospheric CO2 measurements: Results from transient simulations
considering increasing CO2, climate, and land-use effects. Global
Biogeochem. Cycles, 16, 1092, doi:10.1029/2001GB001426.
Davey, M., et al., 2002: STOIC: A study of coupled GCM climatology
and variability in tropical ocean regions. Clim. Dyn., 18, 403–420,
doi:10.1007/s00382-001-0188-6.
Del Genio, A.D., and A.B. Wolf, 2000: The temperature dependence of the
liquid water path of low clouds in the southern great plains. J. Clim., 13,
3465 3486.
Del Genio, A.D., and W. Kovari, 2002: Climatic properties of tropical
precipitating convection under varying environmental conditions. J.
Clim., 15, 2597–2615.
Del Genio, A.D., A. Wolf, and M.-S. Yao, 2005a: Evaluation of regional
cloud feedbacks using single-column models. J. Geophys. Res., 110,
D15S13, doi:10.1029/2004JD005011.
Del Genio, A.D., W. Kovari, M.-S. Yao, and J. Jonas, 2005b: Cumulus
microphysics and climate sensitivity. J. Clim., 18, 2376–2387,
doi:10.1175/JCLI3413.1.
Delire, C., J.A. Foley, and S. Thompson, 2003: Evaluating the carbon cycle
of a coupled atmosphere–biosphere model. Global Biogeochem. Cycles,
17, 1012, doi:10.1029/2002GB001870.
Delworth, T.L., and M.E. Mann, 2000: Observed and simulated multidecadal
variability in the Northern Hemisphere. Clim. Dyn., 16(9), 661–676.
Delworth, T., S. Manabe, and R.J. Stouffer, 1993: Interdecadal variations
of the thermohaline circulation in a coupled ocean-atmosphere model. J.
Clim., 6, 1993–2011.
Delworth, T.L., V. Ramaswamy, and G.L. Stenchikov, 2005: The impact
of aerosols on simulated ocean temperature and heat content in the 20th
century. Geophys. Res. Lett., 32, L24709, doi:10.1029/2005GL024457.
Delworth, T., et al., 2006: GFDL’s CM2 global coupled climate models
– Part 1: Formulation and simulation characteristics. J. Clim., 19, 643–
674.
Déqué, M., C. Dreveton, A. Braun, and D. Cariolle, 1994: The ARPEGE/
IFS atmosphere model: A contribution to the French community climate
modeling. Clim. Dyn., 10, 249–266.
Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system.
J. Phys. Oceanogr., 19(9), 1333–1347.
Deser, C., A.S. Phillips, and J.W. Hurrell, 2004: Pacifi c interdecadal climate
variability: Linkages between the tropics and North Pacifi c during boreal
winter since 1900. J. Clim., 17, 3109–3124.
Dessler, A.E., and S.C. Sherwood, 2000: Simulations of tropical upper
tropospheric humidity. J. Geophys. Res., 105, 20155–20163.
Diansky, N.A., and E.M. Volodin, 2002: Simulation of the present-day
climate with a coupled atmosphere-ocean general circulation model. Izv.
Atmos. Ocean. Phys., 38, 732–747 (English translation).
Diansky, N.A., A.V. Bagno, and V.B. Zalesny, 2002: Sigma model of
global ocean circulation and its sensitivity to variations in wind stress.
Izv. Atmos. Ocean. Phys., 38, 477–494 (English translation).
Dirmeyer, P.A., 2001: An evaluation of the strength of land-atmosphere
coupling. J. Hydrometeorol., 2, 329–344.
Dong, M., et al., 2000: Developments and implications of the atmospheric
general circulation model. In: Investigations on the Model System of
the Short-Term Climate Predictions [Ding, Y., et al. (eds.)]. China
Meteorological Press, Beijing, China, pp. 63–69 (in Chinese).
Doutriaux-Boucher, M., and J. Quaas, 2004: Evaluation of cloud
thermodynamic phase parametrizations in the LMDZ GCM by using
POLDER satellite data. Geophys. Res. Lett., 31, L06126, doi:10.1029/
2003GL019095.
Douville, H., 2001: Infl uence of soil moisture on the Asian and African
Monsoons. Part II: interannual variability. J. Clim., 15, 701–720.
Douville, H., J.-F. Royer, and J.-F. Mahfouf, 1995: A new snow
parameterization for the Meteo-France climate model. Clim. Dyn., 12,
21–35.
Drange, H., et al., 2005: Ocean general circulation modelling of the Nordic
Seas. In: The Nordic Seas: An Integrated Perspective [Drange, H., et
al. (eds.)]. Geophysical Monograph 158, American Geophysical Union,
Washington, DC, pp. 199–220.
Driesschaert, E., 2005: Climate Change over the Next Millennia Using
LOVECLIM, a New Earth System Model Including Polar Ice Sheets. PhD
Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium,
BelnUcetd-10172005-185914/.
Ducharne, A., et al., 2003: Development of a high resolution runoff routing
model, calibration and application to assess runoff from the LMD GCM.
J. Hydrol., 280, 207–228.
Dufresne, J.-L., et al., 2002: On the magnitude of positive feedback
between future climate change and the carbon cycle. Geophys. Res. Lett.,
29(10), doi:10.1029/2001GL013777.
Dümenil, L., and E. Todini, 1992: A rainfall-runoff scheme for use in
the Hamburg climate model. In: Advances in Theoretical Hydrology:
A Tribute to James Dooge. European Geophysical Society Series on
Hydrological Sciences, Vol. 1 [O’Kane, J.P. (ed.)]. Elsevier Press,
Amsterdam, pp. 129–157.
Durman, C.F., et al., 2001: A comparison of extreme European daily
precipitation simulated by a global model and regional climate model for
present and future climates. Q. J. R. Meteorol. Soc., 127, 1005–1015.
Edwards, N.R., and R.J. Marsh, 2005: Uncertainties due to transportparameter
sensitivity in an effi cient 3-D ocean-climate model. Clim.
Dyn., 24, 415–433, doi:10.1007/s00382-004-0508-8.
Emanuel, K.A., and M. Zivkovic-Rothman, 1999: Development and
evaluation of a convection scheme for use in climate models. J. Atmos.
Sci., 56, 1766–1782.
Emori, S., A. Hasegawa, T. Suzuki, and K. Dairaku, 2005: Validation,
parameterization dependence and future projection of daily precipitation
simulated with an atmospheric GCM. Geophys. Res. Lett., 32, L06708,
doi:10.1029/2004GL022306.
Essery, R.H., and J. Pomeroy, 2004: Vegetation and topographic control of
wind-blown snow distributions in distributed and aggregated simulations.
J. Hydrometeorol., 5(5), 735–744.
Essery, R., M. Best, and P. Cox, 2001: MOSES 2.2 Technical
Documentation. Hadley Centre Technical Note No. 30, Hadley Centre
for Climate Prediction and Research, UK Met Offi ce, Exeter, UK, http://
www.metoffi ce.gov.uk/research/hadleycentre/pubs/HCTN/index.html.
Essery, R.H., J. Pomeroy, J. Parvianen, and P. Storck, 2003: Sublimation of
snow from boreal forests in a climate model. J. Clim., 16, 1855–1864.
Etchevers, P., et al., 2004: Validation of the energy budget of an alpine
snowpack simulated by several snow models (SnowMIP project). Ann.
Glaciol., 38, 150–158.
Farrara, J.D., C.R. Mechoso, and A.W. Robertson, 2000: Ensembles of
AGCM two-tier predictions and simulations of the circulation anomalies
during winter 1997–1998. Mon. Weather Rev., 128, 3589–3604.
Felzer, B., et al., 2005: Global and future implications of ozone on net
primary production and carbon sequestration using a biogeochemical
model. Clim. Change, 73, 345–373.
Fichefet, T., and M.A. Morales Maqueda, 1997: Sensitivity of a global
sea ice model to the treatment of ice thermodynamics and dynamics. J.
Geophys. Res., 102, 12609–12646.
Fichefet, T., et al., 2003: Implications of changes in freshwater fl ux from
the Greenland ice sheet for the climate of the 21st century. Geophys. Res.
Lett., 30(17), 1911, doi:10.1029/2003GL017826.
Fiorino, M., 1997: PCMDI IPCC ’95 AMIP Analysis: Observations used in
the analysis. PCMDI Web. Rep., Program for Climate Model Diagnosis
and Intercomparison, Lawrence Livermore National Laboratory,
Flato, G.M., 2004: Sea-ice and its response to CO2 forcing as simulated by
global climate models. Clim. Dyn., 23, 229–241, doi:10.1007/s00382-
004-0436-7.
Flato, G.M., 2005: The Third Generation Coupled Global Climate
Model (CGCM3) (and included links to the description of the AGCM3
Flato, G.M., and W.D. Hibler, 1992: Modeling pack ice as a cavitating
fl uid. J. Phys. Oceanogr., 22, 626–651.
Flato, G.M., and G.J. Boer, 2001: Warming asymmetry in climate change
simulations. Geophys. Res. Lett., 28, 195–198.
Flugel, M., P. Chang, and C. Penland, 2004: The role of stochastic forcing
in modulating ENSO predictability. J. Clim., 17(16), 3125–3140.
Folkins, I., K.K. Kelly, and E.M. Weinstock, 2002: A simple explanation
of the increase in relative humidity between 11 and 14 km in the tropics.
J. Geophys. Res., 107, doi:10.1029/2002JD002185.
Folland, C.K., T.K. Palmer, and D.E. Parker, 1986: Sahel rainfall and
worldwide sea temperatures. Nature, 320, 602–607.
Forster, P.M. de F., and K.P. Shine, 2002: Assessing the climate impact of
trends in stratospheric water vapour. Geophys. Res. Lett., 6, doi:10.1029/
2001GL013909.
Forster, P.M. de F., and M. Collins, 2004: Quantifying the water vapour
feedback associated with post-Pinatubo cooling. Clim. Dyn., 23, 207–
214.
Forster, P.M. de F., and K.E. Taylor, 2006: Climate forcings and climate
sensitivities diagnosed from coupled climate model integrations. J.
Clim., 19, 6181–6194.
Frei, A., J. Miller, and D. Robinson, 2003: Improved simulations of snow
extent in the second phase of the Atmospheric Model Intercomparison
Project (AMIP-2). J. Geophys. Res., 108(D12), 4369, doi:10.1029/
2002JD003030.
Frei, A., J.A. Miller, R. Brown, and D.A. Robinson, 2005: Snow mass
over North America: observations and results from the second phase
of the Atmospheric Model Intercomparison Project (AMIP-2). J.
Hydrometeorol., 6, 681–695.
Frich, P., et al., 2002: Observed coherent changes in climatic extremes
during the second half of the twentieth century. Clim. Res., 19, 193–
212.
Friedlingstein, P., et al., 2001: Positive feedback between future climate
change and the carbon cycle. Geophys. Res. Lett., 28(8), 1543–1546.
Friedlingstein, P., J.-L. Dufresne, P.M Cox, and P. Rayner, 2003: How
positive is the feedback between climate change and the carbon cycle?
Tellus, 55B, 692–700.
Friedlingstein, P., et al., 2006: Climate–carbon cycle feedback analysis,
results from the C4MIP model intercomparison. J. Clim., 19, 3337–
3353.
Friend, A.D., and N.Y. Kiang, 2005: Land surface model development for
the GISS GCM: Effects of improved canopy physiology on simulated
climate. J. Clim., 18, 2883–2902.
Fu, Q., M. Baker, and D.L. Hartmann, 2002: Tropical cirrus and water
vapour: an effective Earth infrared iris? Atmos. Chem. Phys., 2, 31–37.
Fu, Q., C.M. Johanson, S.G. Warren, and D.J. Seidel, 2004: Contribution
of stratospheric cooling to satellite-inferred tropospheric temperature
trends. Nature, 429, 55–58.
Furevik, T., et al., 2003: Description and evaluation of the Bergen climate
model: ARPEGE coupled with MICOM. Clim. Dyn., 21, 27–51.
Fyfe, J.C., G.J. Boer, and G.M. Flato, 1999: The Arctic and Antarctic
Oscillations and their projected changes under global warming. Geophys.
Res. Lett., 11, 1601–1604.
Galin, V. Ya., E.M. Volodin, and S.P. Smyshliaev, 2003: Atmospheric
general circulation model of INM RAS with ozone dynamics. Russ.
Meteorol. Hydrol., 5, 13–22.
Gallée, H., et al., 1991: Simulation of the last glacial cycle by a coupled,
sectorally averaged climate–ice sheet model. Part I: The climate model.
J. Geophys. Res., 96, 13139–13161.
Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean
circulation, heat transport and mixing from hydrographic data. Nature,
408, 453–457.
Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and
freshwater transports during the World Ocean Circulation Experiment. J.
Clim., 16, 696–705.
Gates, W.L., et al., 1999: An overview of the results of the Atmospheric
Model Intercomparison Project (AMIP I). Bull. Am. Meteorol. Soc., 80,
29–55.
Geng, Q., and M. Sugi, 2003: Possible change of extratropical cyclone
activity due to enhanced greenhouse gases and sulfate aerosols–Study
with a high-resolution AGCM. J. Clim., 16, 2262–2274.
Gent, P.R., 2001: Will the North Atlantic Ocean thermohaline circulation
weaken during the 21st century? Geophys. Res. Lett., 28, 1023–1026.
Gent, P.R., J. Willebrand, T.J. McDougall, and J.C. McWilliams, 1995:
Parameterizing eddy-induced tracer transports in ocean circulation
models. J. Phys. Oceanogr., 25, 463–474.
Gerber, S., et al., 2003: Constraining temperature variations over the last
millennium by comparing simulated and observed atmospheric CO2.
Clim. Dyn., 20, 281–299.
Gerten, D., et al., 2004: Terrestrial vegetation and water balance–
hydrological evaluation of a dynamic global vegetation model. J. Hydrol.,
286, 249–270.
Gettelman, A., J.R. Holton, and A.R. Douglass, 2000: Simulations of water
vapor in the lower stratosphere and upper troposphere. J. Geophys. Res.,
105, 9003–9023.
GFDL GAMDT (The GFDL Global Atmospheric Model Development
Team), 2004: The new GFDL global atmosphere and land model AM2-
LM2: Evaluation with prescribed SST simulations. J. Clim., 17, 4641–
4673.
Ghan, S.J., R. Easter, J. Hudson, and F.-M. Bréon, 2001a: Evaluation of
aerosol indirect radiative forcing in MIRAGE. J. Geophys. Res., 106,
5317–5334.
Ghan, S.J., et al., 2001b: Evaluation of aerosol direct radiative forcing in
MIRAGE. J. Geophys. Res., 106, 5295–5316.
Gillett, N.P., 2005: Northern Hemisphere circulation. Nature, 437, 496.
Gillett, N.P., and D.W.J. Thompson, 2003: Simulation of recent Southern
Hemisphere climate change. Science, 302, 273–275.
Giorgetta, M.A., E. Manzini, and E. Roeckner, 2002: Forcing of the
quasi-biennial oscillation from a broad spectrum of atmospheric waves.
Geophys. Res. Lett., 29, 1245, doi:10.1029/2002GL014756.
Giorgetta M.A., et al., 2006: Climatology and forcing of the quasi-biennial
oscillation in the MAECHAM5 model. J. Clim., 19, 3882–3901.
Gleckler, P.J., K.R. Sperber, and K. AchutaRao, 2006a: The annual cycle
of global ocean heat content: observed and simulated. J. Geophys. Res.,
111, C06008, doi:10.1029/2005JC003223.
Gleckler, P.J., et al., 2006b: Krakatoa’s signature persists in the ocean.
Nature, 439, 675, doi:10.1038/439675a.
Gnanadesikan, A., et al., 2004: GFDL’s CM2 global coupled climate
models–Part 2: The baseline ocean simulation. J. Clim., 19, 675–697.
Goldenberg, S.B., C.W. Landsea, A.M. Mestas-Nunez, and W.M. Gray,
2001: The recent increase in Atlantic hurricane activity: Causes and
implications. Science, 293, 474–479.
Goosse, H., and T. Fichefet, 1999: Importance of ice-ocean interactions
for the global ocean circulation: A model study. J. Geophys. Res., 104,
23337–23355.
Goosse, H., F.M. Selten, R.J. Haarsma, and J.D. Opsteegh, 2003: Large
sea-ice volume anomalies simulated in a coupled climate model. Clim.
Dyn., 20, 523–536, doi:10.1007/s00382-002-0290-4.
Goosse, H., et al., 2002: Potential causes of abrupt climate events: a
numerical study with a three-dimensional climate model. Geophys. Res.
Lett., 29(18), 1860, doi:10.1029/2002GL014993.
Gordon, C., et al., 2000: The simulation of SST, sea ice extents and ocean
heat transports in a version of the Hadley Centre coupled model without
fl ux adjustments. Clim. Dyn., 16, 147–168.
Gordon, H.B., et al., 2002: The CSIRO Mk3 Climate System Model.
CSIRO Atmospheric Research Technical Paper No. 60, Commonwealth
Scientifi c and Industrial Research Organisation Atmospheric Research,
Aspendale, Victoria, Australia, 130 pp, http://www.cmar.csiro.au/e-print/
open/gordon_2002a.pdf.
Gordon, N.D., J.R. Norris, C.P. Weaver, and S.A. Klein, 2005: Cluster
analysis of cloud regimes and characteristic dynamics of midlatitude
synoptic systems in observations and a model. J. Geophys. Res., 110,
D15S17, doi:10.1029/2004JD005027.
Govindasamy, B., et al., 2005: Increase of the carbon cycle feedback with
climate sensitivity: results from a coupled and carbon climate and carbon
cycle model. Tellus, 57B, 153–163.
Graham, R.J., et al., 2005: A performance comparison of coupled and
uncoupled versions of the Met Offi ce seasonal prediction general
circulation model. Tellus, 57A, 320–339.
Greenwald, T.J., G.L. Stephens, S.A. Christopher, and T.H.V. Haar, 1995:
Observations of the global characteristics and regional radiative effects
of marine cloud liquid water. J. Clim., 8, 2928–2946.
Gregory, D., et al., 2000: Revision of convection, radiation and cloud
schemes in the ECMWF Integrated Forecasting System. Q. J. R.
Meteorol. Soc., 126, 1685–1710.
Gregory, J.M., et al., 2002: An observationally based estimate of the
climate sensitivity. J. Clim., 15, 3117–3121.
Gregory, J.M., et al., 2005: A model intercomparison of changes in the
Atlantic thermohaline circulation in response to increasing atmospheric
CO2 concentration. Geophys. Res. Lett., 32, L12703, doi:10.1029/
2005GL023209.
Griffi es, S.M., 2004: Fundamentals of Ocean Climate Models. Princeton
University Press, Princeton, NJ, 496 pp.
Guilyardi, E., et al., 2004: Representing El Niño in coupled oceanatmosphere
GCMs: the dominant role of the atmospheric component. J.
Clim., 17, 4623–4629.
Gutowski, W.J., et al., 2004: Diagnosis and attribution of a seasonal
precipitation defi cit in a US regional climate simulation. J.
Hydrometeorol., 5(1), 230–242.
Hagemann, S., 2002: An Improved Land Surface Parameter Dataset
for Global and Regional Climate Models. Max Planck Institute for
Meteorology Report 162, MPI for Meteorology, Hamburg, Germany, 21
pp.
Hagemann, S., and L. Dümenil-Gates, 2001: Validation of the hydrological
cycle of ECMWF and NCEP reanalyses using the MPI hydrological
discharge model. J. Geophys. Res., 106, 1503–1510.
Hall, A., 2004: The role of surface albedo feedback in climate. J. Clim.,
17, 1550–1568.
Hall, A., and S. Manabe, 1999: The role of water vapour feedback in
unperturbed climate variability and global warming. J. Clim., 12, 2327–
2346.
Hall, A., and R.J. Stouffer, 2001: An abrupt climate event in a coupled
ocean-atmosphere simulation without external forcing. Nature,
409(6817), 171–174.
Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern
Hemisphere atmosphere, sea ice and ocean resulting from the annular
mode. J. Clim., 15, 3043–3057.
Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain
snow albedo feedback in future climate change. Geophys. Res. Lett., 33,
L03502, doi:10.1029/2005GL025127.
Hall, M.M., and H.L. Bryden, 1982: Direct estimates and mechanisms of
ocean heat transport. Deep Sea Res., 29, 339–359.
Hamilton, K., R.J. Wilson, and R.S. Hemler, 2001: Spontaneous
stratospheric QBO-like oscillations simulated by the GFDL SKYHI
general circulation model. J. Atmos. Sci., 58, 3271–3292.
Hannachi, A., and A. O’Neill, 2001: Atmospheric multiple equilibria and
non-Gaussian behaviour in model simulations. Q. J. R. Meteorol. Soc.,
127, 939–958.
Hansen, J., et al., 1984: Climate sensitivity: analysis of feedback
mechanisms. Meteorol. Monogr., 29, 130–163.
Hanson, C.E., J.P. Palutikof, and T.D. Davies, 2004: Objective cyclone
climatologies of the North Atlantic - a comparison between the ECMWF
and NCEP Reanalyses. Clim. Dyn., 22, 757–769.
Harder, M., 1996: Dynamik, Rauhigkeit und Alter des Meereises
in der Arktis. PhD Thesis, Alfred-Wegener-Institut für Polar und
Meeresforschung, Bremerhaven, Germany, 124 pp.
Hargreaves, J.C., J.D. Annan, N.R. Edwards, and R. Marsh, 2004: An
effi cient climate forecasting method using an intermediate complexity
Earth System Model and the ensemble Kalman fi lter. Clim. Dyn., 23,
745–760.
Harrison, E.F., et al., 1990: Seasonal variation of cloud radiative forcing
derived from the Earth Radiation Budget Experiment. J. Geophys. Res.,
95, 18687–18703.
Harrison, H., 2002: Comments on “Does the Earth have an adaptive
infrared iris?”. Bull. Am. Meteorol. Soc., 83, 597.
Hartmann, D.L., and K. Larson, 2002: An important constraint on tropical
cloud-climate feedback. Geophys. Res. Lett., 29(20), 1951–1954.
Hartmann, D.L., and M.L. Michelsen, 2002: No evidence for iris. Bull. Am.
Meteorol. Soc., 83, 249–254.
Hartmann, D.L., M.E. Ockert-Bell, and M.L. Michelsen, 1992: The effect
of cloud type on Earth’s energy balance: Global analysis. J. Clim., 5,
1281–1304.
Harvey, D., et al., 1997: An Introduction to Simple Climate Models
Used in the IPCC Second Assessment Report. IPCC Technical Paper 2
[Houghton, J.T., L.G. Meira Filho, D.J. Griggs, and K. Maskell (eds.)].
IPCC, Geneva, Switzerland, 51 pp.
Hasumi, H., 2002a: Sensitivity of the global thermohaline circulation to
interbasin freshwater transport by the atmosphere and the Bering Strait
throughfl ow. J. Clim., 15, 2516–2526.
Hasumi, H., 2002b: Modeling the global thermohaline circulation. J.
Oceanogr., 58, 25–33.
Hasumi, H., and N. Suginohara, 1999: Effects of locally enhanced vertical
diffusivity over rough bathymetry on the world ocean circulation. J.
Geophys. Res., 104, 23367–23374.
Hazeleger, W., et al., 2001: Decadal upper ocean temperature variability in
the tropical Pacifi c. J. Geophys. Res., 106(C5), 8971–8988.
Held, I.M., and B.J. Soden, 2000: Water vapour feedback and global
warming. Annu. Rev. Energy Environ., 25, 441– 475.
Henderson-Sellers, A., P. Irannejad, K. McGuffi e, and A.J. Pitman, 2003:
Predicting land-surface climates - better skill or moving targets? Geophys.
Res. Lett., 30(14), 1777–1780.
Henderson-Sellers, A., K. McGuffi e, D. Noone, and P. Irannejad, 2004:
Using stable water isotopes to evaluate basin-scale simulations of surface
water budgets. J. Hydrometeorol., 5(5), 805–822.
Hendon, H.H., 2000: Impact of air–sea coupling on the Madden–Julian
oscillation in a general circulation model. J. Atmos. Sci., 57, 3939–
3952.
Hendon, H.H., 2005: Air sea interaction. In: Intraseasonal Variability in
the Atmosphere-Ocean Climate System [Lau, W.K.M., and D.E. Waliser
(eds.)]. Praxis Publishing, 436 pp.
Hewitt, C.D., C.S. Senior, and J.F.B. Mitchell, 2001: The impact of
dynamic sea-ice on the climate sensitvity of a GCM: a study of past,
present and future climates. Clim. Dyn., 17, 655–668.
Heymsfi eld, A.J., and L. Donner, 1990: A scheme for parameterizing icecloud
water content in general circulation models. J. Atmos. Sci., 47,
1865–1877.
Hibler, W.D., 1979: A dynamic thermodynamic sea ice model. J. Phys.
Oceanogr., 9, 817–846.
Hirst, A.C., 1999: The Southern Ocean response to global warming in the
CSIRO coupled ocean-atmosphere model. Environ. Model. Software, 14,
227–241.
Hodges, K.I., B.J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A comparison
of recent reanalysis data sets using objective feature tracking: storm
tracks and tropical easterly waves. Mon. Weather Rev., 131, 2012–2037.
Hodges, K.: Feature based diagnostics from ECMWF/NCEP Analyses and
AMIP II: Model Climatologies. In: The Second Phase of the Atmospheric
Model Intercomparison Project (AMIP2) [Gleckler, P. (ed.)]. Proceedings
of the WCRP/WGNE Workshop, Toulouse, France, pp. 201-204.
Holland, M.M., and C.M. Bitz, 2003: Polar amplifi cation of climate change
in coupled models. Clim. Dyn., 21, 221–232, doi:10.1007/s00382-003-
0332-6.
Holland, M.M., and M. Raphael, 2006: Twentieth century simulation of
the Southern Hemisphere climate in coupled models. Part II: sea ice
conditions and variability. Clim. Dyn., 26, 229–245, doi:10.1007/s00382-
005-0087-3.
Horinouchi, T., 2002: Mesoscale variability of tropical precipitation:
Validation of satellite estimates of wave forcing using TOGA COARE
radar data. J. Atmos. Sci., 59, 2428–2437.
Horinouchi, T., and S. Yoden, 1998: Wave-mean fl ow interaction associated
with a QBO-like oscillation simulated in a simplifi ed GCM. J. Atmos.
Sci., 55, 502–526.
Horinouchi, T., et al., 2003: Tropical cumulus convection and upwardpropagating
waves in middle-atmospheric GCMs. J. Atmos. Sci., 60,
2765–2782.
Hoskins, B.J., and K.I. Hodges, 2002: New perspectives on the Northern
Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041–1061.
Hoskins, B.J., and K.I. Hodges, 2005: New perspectives on the Southern
Hemisphere storm tracks. J. Clim., 18, 4108–4129.
Hourdin, F., et al., 2006: The LMDZ4 general circulation model: Climate
performance and sensitivity to parameterized physics with emphasis on
tropical convection. Clim. Dyn., 27, 787–813.
Hovine, S., and T. Fichefet, 1994: A zonally averaged, three-basin ocean
circulation model for climate studies. Clim. Dyn., 15, 1405–1413.
Hsu, C.J., and F. Zwiers, 2001: Climate change in recurrent regimes and
modes of atmospheric variability. J. Geophys. Res., 106, 20145–20160.
Hu, A.X., G.A. Meehl, W.M. Washington, and A. Dai, 2004: Response of
the Atlantic thermohaline circulation to increased atmospheric CO2 in a
coupled model. J. Clim., 17, 4267–4279.
Huang, X., B.J. Soden, and D.L. Jackson, 2005: Interannual co-variability
of tropical temperature and humidity: A comparison of model, reanalysis
data and satellite observation. Geophys. Res. Lett., 32, L17808,
doi:10.1029/2005GL023375.
Hunke, E.C., and J.K. Dukowicz, 1997: An elastic-viscous-plastic model
for sea ice dynamics. J. Phys. Oceanogr., 27, 1849–1867.
Hunke, E.C., and J.K. Dukowicz, 2002: The Elastic-Viscous-Plastic sea
ice dynamics model in general orthogonal curvilinear coordinates on a
sphere–Effect of metric terms. Mon. Weather Rev., 130, 1848–1865.
Hunke, E.C., and J.K. Dukowicz, 2003: The Sea Ice Momentum Equation
in the Free Drift Regime. Technical Report LA-UR-03-2219, Los Alamos
National Laboratory, Los Alamos, NM.
Hurrell, J.W., M.P. Hoerling, A.S. Phillips, and T. Xu, 2004: Twentieth
century North Atlantic climate change. Part I: assessing determinism.
Clim. Dyn., 23, 371–389.
Hutchings, J.K., H. Jasak, and S.W. Laxon, 2004: A strength implicit
correction scheme for the viscous-plastic sea ice model. Ocean Modelling,
7, 111–133.
Huybrechts, P., 2002: Sea-level changes at the LGM from ice-dynamics
reconstructions of the Greenland and Antarctic ice sheets during the
glacial cycles. Quat. Sci. Rev., 21, 203–231.
Huybrechts, P., I. Janssens, C. Poncin, and T. Fichefet, 2002: The response
of the Greenland ice sheet to climate changes in the 21st century by
interactive coupling of an AOGCM with a thermomechanical ice sheet
model. Ann. Glaciol., 35, 409–415.
Iacobellis, S.F., G.M. McFarquhar, D.L. Mitchell, and R.C.J. Somerville,
2003: The sensitivity of radiative fl uxes to parameterized cloud
microphysics. J. Clim., 16, 2979–2996.
Iacono, M.J., J.S. Delamere, E.J. Mlawer, and S.A. Clough, 2003:
Evaluation of upper tropospheric water vapor in the NCAR Community
Climate Model, CCM3, using modeled and observed HIRS radiances. J.
Geophys. Res., 108(D2), 4037, doi:10.1029/2002JD002539.

 

Inamdar, A.K., and V. Ramanathan, 1998: Tropical and global scale
interactions among water vapour, atmospheric greenhouse effect, and
surface temperature. J. Geophys. Res., 103, 32177–32194.
Ingram, W.J., 2002: On the robustness of the water vapor feedback: GCM
vertical resolution and formulation. J. Clim., 15, 917–921.
Inness, P.M., and J.M. Slingo, 2003: Simulation of the MJO in a coupled
GCM. I: Comparison with observations and atmosphere-only GCM. J.
Clim., 16, 345–364.
Inness, P.M., J.M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of
the MJO in a coupled GCM. II: The role of the basic state. J. Clim., 16,
365–382.
Iorio, J.P., et al., 2004: Effects of model resolution and subgrid scale physics
on the simulation of precipitation in the continental United States. Clim.
Dyn., 23, 243–258, doi:10.1007/s00382-004-0440-y.
Jaeger, L., 1976: Monatskarten des Niederschlags für die Ganze Erde. Ber.
Deutsche Wetterdienstes 139, Germany, 38 pp.
Jakob, C., and G. Tselioudis, 2003: Objective identifi cation of cloud
regimes in the tropical western pacifi c. Geophys. Res. Lett., 30,
doi:10.1029/2003GL018367.
Jennings, R.L., 1975: Data Sets for Meteorological Research. NCAR-TN/
1A, National Center for Atmospheric Research, Boulder, CO, 156 pp.
Ji, M., A. Leetmaa, and V.E. Kousky, 1996: Coupled model predictions
of ENSO during the 1980s and the 1990s at the National Centers for
Environmental Prediction. J. Clim., 9, 3105–3120.
Jin, X.Z., X.H. Zhang, and T.J. Zhou, 1999: Fundamental framework
and experiments of the third generation of the IAP/LASG World Ocean
General Circulation Model. Adv. Atmos. Sci., 16, 197–215.
Johns, T.C., et al., 2006: The new Hadley Centre climate model HadGEM1:
Evaluation of coupled simulations. J. Clim., 19, 1327–1353.
Jones, C.D., et al., 2005: Systematic optimisation and climate simulation
of FAMOUS, a fast version of HadCM3. Clim. Dyn., 25, 189–204.
Jones, P.D., 1988: Hemispheric surface air temperature variations: Recent
trends and an update to 1987. J. Clim., 1, 654–660.
Jones, P.D., et al., 1999: Surface air temperature and its variations over the
last 150 years. Rev. Geophys., 37, 173–199.
Joos, F., et al., 1999: Global warming and marine carbon cycle feedbacks
on future atmospheric CO2. Science, 284, 464–467.
Joos, F., et al., 2001: Global warming feedbacks on terrestrial carbon
uptake under the IPCC emission scenarios. Global Biogeochem. Cycles,
15, 891–907.
Joshi, M., et al., 2003: A comparison of climate response to different
radiative forcings in three general circulation models: towards an
improved metric of climate change. Clim. Dyn., 20, 843–854.
Jungclaus, J.H., et al., 2006: Ocean circulation and tropical variability in
the AOGCM ECHAM5/MPI-OM. J. Clim., 19, 3952–3972.
K-1 Model Developers, 2004: K-1 Coupled Model (MIROC) Description.
K-1 Technical Report 1 [Hasumi, H., and S. Emori (eds.)]. Center for
Climate System Research, University of Tokyo, Tokyo, Japan, 34 pp.,
Kalnay, E., et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull.
Am. Meteorol. Soc., 77, 437–471.
Kanamitsu, M., et al., 2002: NCEP dynamical seasonal forecast system
2000. Bull. Am. Meteorol. Soc., 83, 1019–1037.
Kattsov, V., and E. Källén, 2005: Future climate change: Modeling and
scenarios for the Arctic. In: Arctic Climate Impact Assessment (ACIA).
Cambridge University Press, Cambridge, UK, pp. 99–150.
Kemball-Cook, S., B. Wang, and X. Fu, 2002: Simulation of the
intraseasonal oscillation in ECHAM-4 model: The impact of coupling
with an ocean model. J. Atmos. Sci., 59, 1433–1453.
Khairoutdinov, M., D. Randall, and C. DeMott, 2005: Simulations of
the atmospheric general circulation using a cloud-resolving model as a
superparameterization of physical processes. J. Atmos. Sci., 62, 2136–
2154.
Kharin, V.V., F.W. Zwiers, and X. Zhang, 2005: Intercomparison of near
surface temperature and precipitation extremes in AMIP-2 simulations,
reanalyses and observations. J. Clim., 18(24), 5201–5223.
Kiehl, J.T., and P.R. Gent, 2004: The Community Climate System Model,
Version 2. J. Clim., 17, 3666–3682.
Kiehl, J.T., et al., 1998: The National Center for Atmospheric Research
Community Climate Model: CCM3. J. Clim., 11, 1131–1149.
Kiktev, D., D.M.H. Sexton, L. Alexander, and C.K. Folland, 2003:
Comparison of modeled and observed trends in indices of daily climate
extremes. J. Clim., 16(22), 3560–3571.
Kim, S.-J., G.M. Flato, G.J. Boer, and N.A. McFarlane, 2002: A coupled
climate model simulation of the Last Glacial Maximum, Part 1: Transient
multi-decadal response. Clim. Dyn., 19, 515–537.
Kimoto, M., N. Yasutomi, C. Yokoyama, and S. Emori, 2005: Projected
changes in precipitation characteristics near Japan under the global
warming. Scientifi c Online Letters on the Atmosphere, 1, 85–88, doi:
10.2151/sola.2005-023.
Kinne, S., et al., 2003: Monthly averages of aerosol properties: A global
comparison among models, satellite, and AERONET ground data. J.
Geophys. Res., 108(D20), 4634, doi:10.1029/2001JD001253.
Kirtman, B.P., 2003: The COLA anomaly coupled model: Ensemble ENSO
prediction. Mon. Weather Rev., 131, 2324–2341.
Kirtman, B.P., and P.S. Schopf, 1998: Decadal variability in ENSO
predictability and prediction. J. Clim., 11, 2804–2822.
Kirtman, B.P., K. Pegion, and S. Kinter, 2005: Internal atmospheric
dynamics and tropical indo-pacifi c climate variability. J. Atmos. Sci., 62,
2220–2233.
Kleeman, R., Y. Tang, and A.M. Moore, 2003: The calculation of
climatically relevant singular vectors in the presence of weather noise as
applied to the ENSO problem. J. Atmos. Sci., 60, 2856–2868.
Kleidon, A., 2004: Global datasets of rooting zone depth inferred from
inverse methods. J. Clim., 17, 2714–2722.
Kleidon, A., K. Fraedrich, and M. Heimann, 2000: A green planet versus
a desert world: estimating the maximum effect of vegetation on the land
surface climate. Clim. Change, 44, 471–493.
Klein, S.A., and D.L. Hartmann, 1993: The seasonal cycle of low stratiform
clouds. J. Clim., 6, 1587–1606.
Klein, S.A., and C. Jakob, 1999: Validation and sensitivities of frontal
clouds simulated by the ECMWF model. Mon. Weather Rev., 127, 2514–
2531.
Knight, J.R, et al., 2005: A signature of persistent natural thermohaline
circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708,
doi:10.1029/2005GL024233.
Knutson, T.R., and R.E. Tuleya, 1999: Increased hurricane intensities with
CO2-induced global warming as simulated using the GFDL hurricane
prediction system. Clim. Dyn., 15(7), 503–519.
Knutson, T.R., and R.E. Tuleya, 2004: Impact of CO2-induced warming
on simulated hurricane intensity and precipitation: Sensitivity to the
choice of climate model and convective parameterization. J. Clim., 17,
3477–3495.
Knutti, R., T.F. Stocker, F. Joos, and G.K. Plattner, 2002: Constraints
on radiative forcing and future climate change from observations and
climate model ensembles. Nature, 416, 719–723.
Knutti, R., G.A. Meehl, M.R. Allen and D.A. Stainforth, 2006: Constraining
climate sensitivity from the seasonal cycle in surface temperature. J.
Clim., 19, 4224–4233.
Kodera, K., and M. Chiba, 1995: Tropospheric circulation changes
associated with stratospheric sudden warmings: A case study. J. Geophys.
Res., 100, 11055–11068.
Komuro, Y., and H. Hasumi, 2005: Intensifi cation of the Atlantic deep
circulation by the Canadian Archipelago throughfl ow. J. Phys. Oceanogr.,
35, 775–789.
Koster, R.D., et al., 2004: Regions of coupling between soil moisture and
precipitation. Science, 305, 1138–1140.
Kraus, E.B., 1990: Diapycnal mixing. In: Climate-Ocean Interaction
[schlesinger, M.E. (ed.)]. Kluwer, Amsterdam, pp. 269–293.
Kraus, E.B., and J.S. Turner, 1967: A one-dimensional model of the
seasonal thermocline. II. The general theory and its consequences. Tellus,
19, 98–105.
Krinner, G., et al., 2005: A dynamic global vegetation model for studies of
the coupled atmosphere-biosphere system. Global Biogeochem. Cycles,
19, GB1015, doi:10.1029/2003GB002199.
Lambert, S.J., and G.J. Boer, 2001: CMIP1 evaluation and intercomparison
of coupled climate models. Clim. Dyn., 17, 83–106.
Lambert, S.J., and J. Fyfe, 2006: Changes in winter cyclone frequencies
and strengths simulated in enhanced greenhouse gas simulations: Results
from the models participating in the IPCC diagnostic exercise. Clim.
Dyn., 26, 713–728.
Lanzante, J.R., 1996: Resistant, robust and nonparametric techniques for
analysis of climate data: Theory and examples, including applications to
historical radiosonde station data. Int. J. Climatol., 16, 1197–1226.
Large, W.G., J.C. McWilliams, and S.C. Doney, 1994: Oceanic vertical
mixing: a review and a model with a nonlocal boundary layer
parameterization. Rev. Geophys., 32, 363–403.
Larson, K., and D.L. Hartmann, 2003: Interactions among cloud, water
vapour, radiation and large-scale circulation in the tropical climate. Part
1: sensitivity to uniform sea surface temperature changes. J. Clim., 15,
1425–1440.
Latif, M., 1998: Dynamics of interdecadal variability in coupled oceanatmosphere
models. J. Clim., 11, 602–624.
Latif, M., E. Roeckner, U. Mikolajewicz, and R. Voss, 2000: Tropical
stabilisation of the thermohaline circulation in a greenhouse warming
simulation. J. Clim., 13, 1809–1813.
Latif, M., et al., 2001: ENSIP: The El Niño simulation intercomparison
project. Clim. Dyn., 18, 255–276.
Latif, M., et al., 2004: Reconstructing, monitoring, and predicting
multidecadal scale changes in the North Atlantic thermohaline circulation
with sea surface temperatures. J. Clim., 17, 1605–1614.
Lawrence, D.M., and J.M. Slingo, 2005: Weak land–atmosphere
coupling strength in HadAM3: The role of soil moisture variability. J.
Hydrometeorol., 6, 670–680.
Le Treut, H., Z.X. Li, and M. Forichon, 1994: Sensitivity of the LMD
general circulation model to greenhouse forcing associated with two
different cloud water parametrizations. J. Clim., 7, 1827–1841.
Lee, M.-I., I.-S. Kang, J.-K. Kim, and B. E. Mapes, 2001: Infl uence
of cloud-radiation interaction on simulating tropical intraseasonal
oscillation with an atmospheric general circulation model. J. Geophys.
Res., 106, 14219–14233.
Levitus, S., and T.P. Boyer, 1994: World Ocean Atlas 1994, Volume 4:
Temperature. NOAA NESDIS E/OC21, Washington, DC, 117 pp.
Levitus, S., and J. Antonov, 1997: Variability of Heat Storage of and the
Rate of Heat Storage of the World Ocean. NOAA NESDIS Atlas 16, US
Government Printing Offi ce, Washington, DC, 6 pp., 186 fi gures.
Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world
ocean, 1955-2003. Geophys. Res. Lett., 32, L02604, doi:10.1029/
2004GLO21592.
Levitus, S., et al., 1998: World Ocean Database 1998, Volume 1:
Introduction. NOAA Atlas NESDIS 18, US Government Printing Offi ce,
Washington, DC.
Liang, X., Z. Xie, and M. Huang, 2003: A new parameterization for surface
and groundwater interactions and its impact on water budgets with the
variable infi ltration capacity (VIC) land surface model. J. Geophys. Res.,
108, 8613, doi:10.1029/2002JD003090.
Limpasuvan, V., and D.L. Hartmann, 2000: Wave-maintained annular
modes of climate variability. J. Clim., 13, 4414–4429.
Lin, B., T. Wong, B.A. Wielicki, and Y. Hu, 2004: Examination of the
decadal tropical mean ERBS nonscanner radiation data for the iris
hypothesis. J. Clim., 17, 1239–1246.
Lin, B., et al., 2002: The iris hypothesis: A negative or positive cloud
feedback? J. Clim., 15, 3–7.
Lin, J.L., et al., 2006: Tropical intraseasonal variability in 14 IPCC AR4
climate models. Part I: Convective signals. J. Clim., 19, 2665–2690.
Lin, W.Y., and M.H. Zhang, 2004: Evaluation of clouds and their radiative
effects simulated by the NCAR Community Atmospheric Model against
satellite observations. J. Clim., 17, 3302–3318.
Lindsay, R.W., and H.L. Stern, 2004: A new Lagrangian model of Arctic
sea ice. J. Phys. Oceanogr., 34, 272–283.
Lindzen, R.S., M.-D. Chou, and A.Y. Hou, 2001: Does the Earth have an
adaptative infrared iris? Bull. Am. Meteorol. Soc., 82, 417–432.
Lindzen, R.S., M.-D. Chou, and A.Y. Hou, 2002: Comment on “No
evidence for iris”. Bull. Am. Meteorol. Soc., 83, 1345–1349.
Lipscomb, W.H., 2001: Remapping the thickness distribution in sea ice
models. J. Geophys. Res., 106, 13989–14000.
Liston, G., 2004: Representing subgrid snow cover heterogeneities in
regional and global models. J. Clim., 17, 1381–1397.
Liu, H., et al., 2004: An eddy-permitting oceanic general circulation model
and its preliminary evaluations. Adv. Atmos. Sci., 21, 675–690.
Liu, J., et al., 2003: Sensitivity of sea ice to physical parameterizations in
the GISS global climate model. J. Geophys. Res., 108, 3053, doi:10.1029/
2001JC001167.
Liu, P., et al., 2005: MJO in the NCAR CAM2 with the Tiedtke convective
scheme. J. Clim., 18, 3007–3020.
Lock, A.P., 2001: The numerical representation of entrainment in
parameterizations of boundary layer turbulent mixing. Mon. Weather
Rev., 129, 1148–1163.
Lock, A.P., et al., 2000: A new boundary layer mixing scheme. Part I:
Scheme description and SCM tests. Mon. Weather Rev., 128, 3187–
3199.
Lohmann, U., and G. Lesins, 2002: Stronger constraints on the
anthropogenic indirect aerosol effect. Science, 298, 1012–1015.
Lorenz, D.J., and D.L. Hartmann, 2001: Eddy–zonal fl ow feedback in the
Southern Hemisphere. J. Atmos. Sci., 58, 3312–3327.
Lu, J., R.J. Greatbatch, and K.A. Peterson, 2004: Trend in Northern
Hemisphere winter atmospheric circulation during the last half of the
twentieth century. J. Clim., 17, 3745–3760.
Luo, Z., and W.B. Rossow, 2004: Characterising tropical cirrus life cycle,
evolution and interaction with upper tropospheric water vapour using
a Lagrangian trajectory analysis of satellite observations. J. Clim., 17,
4541–4563.
Madden, R.A., and P.R. Julian, 1971: Detection of a 40-50 day oscillation
in the zonal wind in the tropical Pacifi c. J. Atmos. Sci., 28, 702–708.
Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA Version 8.1
Ocean General Circulation Model Reference Manual. Notes du Pôle de
Modélisation No. 11, Institut Pierre-Simon Laplace, Paris, 91 pp., http://
www.lodyc.jussieu.fr/opa/Docu_Free/Doc_models/Doc_OPA8.1.pdf.
Mahfouf, J.-F., et al., 1995: The land surface scheme ISBA within the
Meteo-France climate model ARPEGE. Part 1: Implementation and
preliminary results. J. Clim., 8, 2039–2057.
Maloney, E.D., and D.L. Hartmann, 2001: The sensitivity of the
intraseasonal variability in the NCAR CCM3 to changes in convective
parameterization. J. Clim., 14, 2015–2034.
Maltrud, M.E., R.D. Smith, A.J. Semtner, and R.C. Malone, 1998: Global
eddy-resolving ocean simulations driven by 1985–1995 atmospheric
winds. J. Geophys. Res., 103, 30825–30853.
Manabe, S., and R.J. Stouffer, 1988: Two stable equilibria of a coupled
ocean-atmosphere model. J. Clim., 1(9), 841–866.
Manabe, S., and R.J. Stouffer, 1995: Simulation of abrupt climate change
induced by fresh water input to the North Atlantic Ocean. Nature, 378,
165–167.
Manabe, S., and R.J. Stouffer, 1996: Low-frequency variability of surface
air temperature in a 1000-year integration of a coupled atmosphereocean-
land surface model. J. Clim., 9, 376–393.
Manabe, S., and R.J. Stouffer, 1997: Coupled ocean-atmosphere model
response to freshwater input: Comparison to Younger Dryas event.
Paleoceanography, 12, 321–336.
Manabe, S., R.J. Stouffer, M.J. Spelman, and K. Bryan, 1991: Transient
responses of a coupled ocean atmosphere model to gradual changes of
atmospheric CO2. I: Annual mean response. J. Clim., 4, 785–818.
Mann, M.E., R.S. Bradley, and M.K. Hughes, 1998: Global-scale
temperature patterns and climate forcing over the past six centuries.
Nature, 392, 779–787.
Marchal, O., T.F. Stocker, and F. Joos, 1998: A latitude-depth, circulationbiogeochemical
ocean model for paleoclimate studies. Tellus, 50B, 290–
316.
Marotzke, J., 1997: Boundary mixing and the dynamics of three-dimensional
thermohaline circulation. J. Phys. Oceanogr., 27, 1713–1728.
Marshall, G.J., 2003: Trends in the Southern Annular Mode from
observations and reanalyses. J. Clim., 16, 4134–4143.
Marshall, J.C., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic,
quasi-hydrostatic and non-hydrostatic ocean modeling. J. Geophys. Res.,
102, 5733–5752.
Marsland, S.J., et al., 2003: The Max-Planck-Institute global ocean/sea
ice model with orthogonal curvilinear coordinates. Ocean Modelling, 5,
91–127.
Marti, O., et al., 2005: The New IPSL Climate System Model: IPSL-CM4.
Note du Pôle de Modélisation No. 26, Institut Pierre Simon Laplace des
Sciences de l’Environnement Global, Paris, http://dods.ipsl.jussieu.fr/
omamce/IPSLCM4/DocIPSLCM4/FILES/DocIPSLCM4.pdf.
Martin, G.M., et al., 2004: Evaluation of the Atmospheric Performance of
HadGAM/GEM1. Hadley Centre Technical Note No. 54, Hadley Centre
for Climate Prediction and Research/Met Offi ce, Exeter, UK, http://www.
metoffi ce.gov.uk/research/hadleycentre/pubs/HCTN/index.html.
Martin, G.M., et al., 2006: The physical properties of the atmosphere in
the new Hadley Centre Global Environmental Model, HadGEM1. Part I:
Model description and global climatology. J. Clim., 19, 1274–1301.
Maxwell, R.M., and N.L. Miller, 2005: Development of a coupled land
surface and groundwater model. J. Hydrometeorol., 6, 233–247.
May, W., 2004: Simulation of the variability and extremes of daily rainfall
during the Indian summer monsoon for present and future times in a
global time-slice experiment. Clim. Dyn., 22, 183–204.
Mayer, M., C. Wang, M. Webster, and R. Prinn, 2000: Linking air pollution
to global chemistry and climate. J. Geophys. Res., 105, 22869–22896.
McAvaney, B.J., et al., 2001: Model evaluation. In: Climate Change
2001: The Scientifi c Basis. Contribution of Working Group I to the Third
Assessment Report of the Intergovernmental Panel on Climate Change
[Houghton, J.T., et al. (eds.)]. Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, pp. 471–523.
McCarthy, M.P., and R. Toumi, 2004: Observed interannual variability of
tropical troposphere relative humidity. J. Clim., 17, 3181–3191.
McDonald, R.E., et al., 2005: Tropical storms: representation and diagnosis
in climate models and the impacts of climate change. Clim. Dyn., 25,
19–36.
McFarlane, N.A., G.J. Boer, J.-P. Blanchet, and M. Lazare, 1992: The
Canadian Climate Centre second-generation general circulation model
and its equilibrium climate. J. Clim., 5, 1013–1044.
Mechoso, C.R., et al., 1995: The seasonal cycle over the tropical Pacifi c in
general circulation model. Mon. Weather Rev., 123, 2825–2838.
Meehl, G.A., and C. Tebaldi, 2004: More intense, more frequent, and
longer lasting heat waves in the 21st century. Science, 305, 994–997.
Meehl, G.A., and A. Hu, 2006: Mega droughts in the Indian monsoon and
southwest North America and a mechanism for associated multi-decadal
sea surface temperature anomalies. J. Clim., 19, 1605–1623.
Meehl, G.A., C. Tebaldi, and D. Nychka, 2004: Changes in frost days in
simulations of twenty-fi rst century climate. Clim. Dyn., 23, 495–511.
Meehl, G.A., et al., 2001: Factors that affect the amplitude of El Niño in
global coupled climate models. Clim. Dyn., 17, 515–526.
Meissner, K.J., A.J. Weaver, H.D. Matthews, and P.M. Cox, 2003: The role
of land surface dynamics in glacial inception: A study with the UVic
Earth System Model. Clim. Dyn., 21, 515–537, doi:10.1007/s00382-003-
0352-2.
Mellor, G.L., and T. Yamada, 1982: Development of a turbulence closure
model for geophysical fl uid problems. Rev. Geophys., 20, 851–875.
Mellor, G.L., and L. Kantha, 1989: An ice-ocean coupled model. J.
Geophys. Res., 94, 10937–10954.
Mestas-Nunez, A.M., and D.B. Enfi eld, 1999: Rotated global modes of
non-ENSO sea surface temperature variability. J. Clim., 12, 2734–2745.
Miller, J.R., G.L. Russell, and G. Caliri, 1994: Continental-scale river fl ow
in climate models. J. Clim., 7, 914–928.
Miller, R.L., 1997: Tropical thermostats and low cloud cover. J. Clim., 10,
409–440.
Miller, R.L., G.A. Schmidt, and D.T. Shindell, 2006: Forced variations of
annular modes in the 20th century IPCC AR4 simulations. J. Geophys.
Res., 111, D18101, doi:10.1029/2005JD006323.
Milly, P.C.D., and A.B. Shmakin, 2002: Global modeling of land water
and energy balances, Part I: The Land Dynamics (LaD) model. J.
Hydrometeorol., 3, 283–299.
Milly, P.C.D., K.A. Dunne, and A.V. Vecchia, 2005: Global pattern of
trends in streamfl ow and water availability in a changing climate. Nature,
438, 347–350, doi:10.1038/nature04312.
Min, S.-K., S. Legutke, A. Hense, and W.-T. Kwon, 2005: Climatology and
internal variability in a 1000-year control simulation with the coupled
climate model ECHO-G—I. Near-surface temperature, precipitation and
mean sea level pressure. Tellus, 57A, 605–621.
Minschwaner, K., and A.E. Dessler, 2004: Water vapor feedback in the
tropical upper troposphere: model results and observations. J. Clim., 17,
1272–1282.
Minschwaner, K., A.E. Dessler, and S. Parnchai, 2006: Multi-model
analysis of the water vapour feedback in the tropical upper troposphere.
J. Clim., 19, 5455–5464.
Mitchell, T.D., and P.D. Jones, 2005: An improved method of constructing a
database of monthly climate observations and associated high-resolution
grids. Int. J. Climatol., 25, 693 712.
Molteni, F., Kuchraski, F., and Corti, S., 2006: On the predictability of
fl ow-regime properties on interannual to interdecadal timescales. In:
Predictability of Weather and Climate [Palmer, T. and R. Hagedorn
(eds.)]. Cambridge University Press, Cambridge, UK.
Monahan, A.H., and A. Dai, 2004: The spatial and temporal structure of
ENSO nonlinearity. J. Clim., 17, 3026–3036.
Monahan, A.H., J.C. Fyfe, and L. Pandolfo, 2003: The vertical structure
of wintertime climate regimes of the Northern Hemisphere extratropical
atmosphere. J. Clim., 16, 2005–2021.
Montoya, M., et al., 2005: The Earth System Model of Intermediate
Complexity CLIMBER-3α. Part I: Description and performance for
present day conditions. Clim. Dyn., 25, 237–263, doi:10.1007/s00382-
005-0044-1.
Mouchet, A., and L. François, 1996: Sensitivity of a global oceanic
carbon cycle model to the circulation and to the fate of organic matter:
Preliminary results. Phys. Chem. Earth, 21, 511–516.
Moum, J.N., D.R. Caldwell, J.D. Nash, and G.D. Gunderson, 2002:
Observations of boundary mixing over the continental slope. J. Phys.
Oceanogr., 32, 2113–2130.
Murphy, J.M., 1995: Transient response of the Hadley Centre coupled
ocean-atmosphere model to increasing carbon dioxide. Part III: analysis
of global-mean response using simple models. J. Clim., 8, 496–514.
Murphy, J.M., et al., 2004: Quantifi cation of modelling uncertainties in a
large ensemble of climate change simulations. Nature, 430, 768–772.
Murray, R.J., 1996: Explicit generation of orthogonal grids for ocean
models. J. Comput. Phys., 126, 251–273.
Myhre, G., E.J. Highwood, K.P. Shine, and F. Stordal, 1998: New estimates
of radiative forcing due to well mixed greenhouse gases. Geophys. Res.
Lett., 25, 2715–2718.
Nakano, H., and N. Suginohara, 2002: Effects of bottom boundary layer
parameterization on reproducing deep and bottom waters in a World
Ocean model. J. Phys. Oceanogr., 32, 1209–1227.
Naud, C.M., A.D. Del Genio, and M. Bauer, 2006: Observational
constraints on cloud thermodynamic phase in midlatitude storms. J.
Clim., 19, 5273–5288.
Neale, R., and J. Slingo, 2003: The maritime continent and its role in the
global climate: A GCM study. J. Clim., 16, 834–848.
Newman, M., G.P. Compo, and M.A. Alexander, 2003: ENSO-forced
variability of the PDO. J. Clim., 16, 3853–3857.
Nijssen, B., et al., 2003: Simulation of high latitude hydrological processes
in the Torne-Kalix basin: PILPS Phase 2(e) 2: Comparison of model
results with observations. Global Planet. Change, 38, 31–53.
Norris, J.R., 1998a: Low cloud type over the ocean from surface
observations. Part I: relationship to surface meteorology and the vertical
distribution of temperature and moisture. J. Clim., 11, 369–382.
Norris, J.R., 1998b: Low cloud type over the ocean from surface
observations. Part II: geographical and seasonal variations. J. Clim., 11,
383–403.
Norris, J.R., and C.P. Weaver, 2001: Improved techniques for evaluating
GCM cloudiness applied to the NCAR CCM3. J. Clim., 14, 2540–2550.
Norris, J.R., and S.F. Iacobellis, 2005: North pacifi c cloud feedbacks
inferred from synoptic-scale dynamic and thermodynamic relationships.
J. Clim., 18, 4862–4878.
NRC (National Research Council), 2003: Understanding Climate Change
Feedbacks. National Academies Press, Washington, DC, 152 pp.
O’Farrell, S.P., 1998: Investigation of the dynamic sea ice component of a
coupled atmosphere sea-ice general circulation model. J. Geophys. Res.,
103, 15751–15782.
Oki, T., and Y.C. Sud, 1998: Design of total runoff integrating pathways
(TRIP)—A global river channel network. Earth Interactions, 2, 1–37.
Oleson, K.W., et al., 2004: Technical Description of the Community Land
Model (CLM). NCAR Technical Note NCAR/TN-461+STR, National
Center for Atmospheric Research, Boulder, CO, 173 pp.
Oliver, K.I.C., A.J. Watson, and D.P. Stevens, 2005: Can limited ocean
mixing buffer rapid climate change? Tellus, 57A, 676–690.
Oouchi, K., et al., 2006: Tropical cyclone climatology in a global-warming
climate as simulated in a 20 km-mesh global atmospheric model:
Frequency and wind intensity analyses. J. Meteorol. Soc. Japan, 84,
259–276.
Opsteegh, J.D., R.J. Haarsma, F.M. Selten, and A. Kattenberg, 1998:
ECBILT: A dynamic alternative to mixed boundary conditions in ocean
models. Tellus, 50A, 348–367.
Osborn, T.J., 2004: Simulating the winter North Atlantic Oscillation: the
roles of internal variability and greenhouse gas forcing. Clim. Dyn., 22,
605–623.
Otterå, O.H., et al., 2004: Transient response of the Atlantic meridional
overturning circulation to enhanced freshwater input to the Nordic Seas-
Arctic Ocean in the Bergen Climate Model. Tellus, 56A, 342–361.
Otto-Bliesner, B.L., et al., 2006: Climate sensitivity of moderate- and lowresolution
versions of CCSM3 to preindustrial forcings. J. Clim., 19,
2567–2583.
Pacanowski, R.C., K. Dixon, and A. Rosati, 1993: The GFDL Modular
Ocean Model Users Guide, Version 1.0. GFDL Ocean Group Technical
Report No. 2, Geophysical Fluid Dynamics Laboratory, Princeton, NJ.
Paciorek, C.J., J.S. Risbey, V. Ventura, and R.D. Rosen, 2002: Multiple
indices of Northern Hemisphere cyclone activity, winters 1949-99. J.
Clim., 15, 1573–1590.
Palmer, T.N., and J. Shukla, 2000: Editorial (for special issue on DSP/
PROVOST). Q. J. R. Meteorol. Soc., 126, 1989–1990.
Palmer, T.N., et al., 2004: Development of a European multimodel
ensemble system for seasonal to interannual prediction (DEMETER).
Bull. Am. Meteorol. Soc., 85, 853–872.
Pan, Z., et al., 2004: Evaluation of uncertainties in regional climate change
simulations. J. Geophys. Res., 106, 17735–17752.
Pardaens, A.K., H.T. Banks, J.M. Gregory, and P.R. Rowntree, 2003:
Freshwater transports in HadCM3. Clim. Dyn., 21, 177–195.
Parekh, P., M.J. Follows, and E. Boyle, 2005: Decoupling of iron
and phosphate in the global ocean. Global Biogeochem. Cycles, 19,
doi:10.1029/2004GB002280.
Pelly, J.L., and B.J. Hoskins, 2003a: A new perspective on blocking. J.
Atmos. Sci., 60, 743–755.
Pelly, J.L., and B.J. Hoskins, 2003b: How well does the ECMWF Ensemble
Prediction System predict blocking? Q. J. R. Meteorol. Soc., 129, 1683–
1702.
Peters, M.E., and C.S. Bretherton, 2005: A simplifi ed model of the Walker
circulation with an interactive ocean mixed layer and cloud-radiative
feedbacks. J. Clim., 18, 4216–4234.
Petoukhov, V., et al., 2000: CLIMBER-2: A climate system model of
intermediate complexity. Part I: Model description and performance for
present climate. Clim. Dyn., 16, 1–17.
Petoukhov, V., et al., 2005: EMIC Intercomparison Project (EMIP-CO2):
Comparative analysis of EMIC simulations of current climate and
equilibrium and transient responses to atmospheric CO2 doubling. Clim.
Dyn., 25, 363–385, doi:10.1007/s00382-005-0042-3.
Phillips, T.J., et al., 2004: Evaluating parameterizations in general
circulation models: Climate simulation meets weather prediction. Bull.
Am. Meteorol. Soc., 85, 1903–1915.
Piani, C., D.J. Frame, D.A. Stainforth, and M.R. Allen, 2005: Constraints on
climate change from a multi-thousand member ensemble of simulations.
Geophys. Res. Lett., 32, L23825, doi:10.1029/2005GL024452.
Pierce, D.W., T.P. Barnett, and M. Latif, 2000: Connections between the
Pacifi c Ocean tropics and midlatitudes on decadal time scales. J. Clim.,
13, 1173–1194.
Pierrehumbert, R.T., 1995: Thermostats, radiator fi ns, and the local
runaway greenhouse. J. Atmos. Sci., 52, 1784–180.
Pierrehumbert, R.T., 1999: Subtropical water vapour as a mediator of
rapid global climate change. In: Mechanisms of Global Climate Change
at Millennial Timescales. Geophysical Monograph 112, American
Geophysical Union, Washington, DC, pp. 339–361.
Pierrehumbert, R.T., and R. Roca, 1998: Evidence for control of Atlantic
subtropical humidity by large scale advection. Geophys. Res. Lett., 25,
4537–4540.
Pierrehumbert, R.T., H. Brogniez, and R. Roca, 2007: On the relative
humidity of the Earth’s atmosphere. In: The General Circulation
[schneider, T., and A. Sobel (eds.)]. Princeton University Press,
Princeton, NJ, in press.
Pitman, A.J., B.J. McAvaney, N. Bagnoud, and B. Cheminat, 2004: Are
inter-model differences in AMIP-II near surface air temperature means
and extremes explained by land surface energy balance complexity?
Geophys. Res. Lett., 31, L05205, doi:10.1029/2003GL019233.
Plattner, G.-K., F. Joos, T.F. Stocker, and O. Marchal, 2001: Feedback
mechanisms and sensitivities of ocean carbon uptake under global
warming. Tellus, 53B, 564–592.
Plaut, G., and E. Simonnet, 2001: Large–scale circulation classifi cation,
weather regimes, and local climate over France, the Alps, and Western
Europe. Clim. Res., 17, 303–324.
Polzin, K.L., J.M. Toole, J.R. Redwell, and R.W. Schmitt, 1997: Spatial
variability of turbulent mixing in the abyssal ocean. Science, 276, 93–
96.
Pope, V.D., and R.A. Stratton, 2002: The processes governing horizontal
resolution sensitivity in a climate model. Clim. Dyn., 19, 211–236.
Pope, V.D., M.L. Gallani, P.R. Rowntree, and R.A. Stratton, 2000: The
impact of new physical parametrizations in the Hadley Centre climate
model: HadAM3. Clim. Dyn., 16, 123–146.
Potter, G.L., and R.D. Cess, 2004: Testing the impact of clouds on the
radiation budgets of 19 atmospheric general circulation models. J.
Geophys. Res., 109, doi:10.1029/2003JD004018.
Power, S.B., and R. Colman, 2006: Multi-decadal predictability in a
coupled GCM. Clim. Dyn., 26, 247–272.
Power, S.B., M.H. Haylock, R. Colman, and X. Wang, 2006: The
predictability of interdecadal changes in ENSO activity and ENSO
teleconnections. J. Clim., 19, 4755–4771.
Power, S., et al., 1999: Interdecadal modulation of the impact of ENSO on
Australia. Clim. Dyn., 15, 319–324.
Qu, X., and A. Hall, 2005: Surface contribution to planetary albedo
variability in cryosphere regions. J. Clim., 18, 5239–5252.
Quadrelli, R., and J.M. Wallace, 2004: A simplifi ed linear framework
for interpreting patterns of northern hemisphere wintertime climate
variability. J. Clim., 17, 3728–3744.
Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic
thermohaline circulation. Clim. Dyn., 12, 799–811.
Rahmstorf, S., et al., 2005: Thermohaline circulation hysteresis: A
model intercomparison. Geophys. Res. Lett., 32, L23605, doi:10.1029/
2005GL023655.
Randall, D.A., et al., 2003: Confronting models with data: The GEWEX
Cloud Systems Study. Bull. Am. Meteorol. Soc., 84, 455–469.
Randall, D.A., et al., 2006: Cloud feedbacks. In: Frontiers in the Science of
Climate Modeling [Kiehl, J.T., and V. Ramanathan (eds.)]. Proceedings
of a symposium in honor of Professor Robert D. Cess.
Raper, S.C.B., T.M.L. Wigley, and R.A. Warrick, 1996: Global sea-level
rise: past and future. In: Sea-Level Rise and Coastal Subsidence: Causes,
Consequences and Strategies [Milliman, J.D., and B.U. Haq (eds.)].
Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 11–46.
Raper, S.C.B., J.M. Gregory, and T.J. Osborn, 2001: Use of an upwellingdiffusion
energy balance model to simulate and diagnose A/OGCM
results. Clim. Dyn., 17, 601–613.
Raphael, M.N., and M.M. Holland, 2006: Twentieth century simulation of
the Southern Hemisphere climate in coupled models. Part 1: Large scale
circulation variability. Clim. Dyn., 26, 217–228, doi:10.1007/s00382-
005-0082-8.
Rayner, N.A., et al., 2003: Global analyses of sea surface temperature, sea
ice, and night marine air temperature since the late nineteenth century. J.
Geophys. Res., 108(D14), doi:10.1029/2002JD002670.
Redi, M.H., 1982: Oceanic isopycnal mixing by coordinate rotation. J.
Phys. Oceanogr., 12, 1154–1158.
Renssen, H., V. Brovkin, T. Fichefet, and H. Goosse, 2003: Holocene
climate instability during the termination of the African Humid Period.
Geophys. Res. Lett., 30(4), 1184, doi:10.1029/2002GL016636.
Renwick, J.A., 1998: ENSO-related variability in the frequency of South
Pacifi c blocking. Mon. Weather Rev., 126, 3117–3123.
Rial, J.A., 2004: Abrupt climate change: chaos and order at orbital and
millennial scales. Global Planet. Change, 41, 95–109.
Ridley, J.K., P. Huybrechts, J.M. Gregory, and J.A. Lowe, 2005:
Elimination of the Greenland ice sheet in a high CO2 climate. J. Clim.,
18, 3409–3427.
Rind, D.G., et al., 2001: Effects of glacial meltwater in the GISS Coupled
Atmosphere-Ocean model: Part II. A bipolar seesaw in deep water
production. J. Geophys. Res., 106, 27355–27365.
Ringer, M.A., and R.P. Allan, 2004: Evaluating climate model simulations
of tropical clouds. Tellus, 56A, 308–327.
Ringer, M.A., et al., 2006: The physical properties of the atmosphere in the
new Hadley Centre Global Environmental Model (HadGEM1). Part II:
Aspects of variability and regional climate. J. Clim., 19, 1302–1326.
Roberts, M.J., 2004: The Ocean Component of HadGEM1. GMR Report
Annex IV.D.3, Met Offi ce, Exeter, UK.
Roberts, M., et al., 2004: Impact of an eddy-permitting ocean resolution
on control and climate change simulations with a global coupled GCM.
J. Clim., 17, 3–20.
Robertson, A.W., 2001: Infl uence of ocean-atmosphere interaction on
the Arctic Oscillation in two general circulation models. J. Clim., 14,
3240–3254.
Robock, A., et al., 2000: The global soil moisture data bank. Bull. Am.
Meteorol. Soc., 81, 1281–1299.
Roeckner, E., et al., 1996: The Atmospheric General Circulation Model
ECHAM4: Model Description and Simulation of Present-Day Climate.
MPI Report No. 218, Max-Planck-Institut für Meteorologie, Hamburg,
Germany, 90 pp.
Roeckner, E., et al., 2003: The Atmospheric General Circulation Model
ECHAM5. Part I: Model Description. MPI Report 349, Max Planck
Institute for Meteorology, Hamburg, Germany, 127 pp.
Roesch, A., 2006: Evaluation of surface albedo and snow cover in AR4
coupled climate models. J. Geophys. Res., 111, D15111, doi:10.1029/
2005JD006473.
Rooth, C., 1982: Hydrology and ocean circulation. Prog. Oceanogr., 11,
131–149.
Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial
conditions on ENSO forecasting with a coupled model. Mon. Weather
Rev., 125(5), 754–772.
Ross, R.J., W.P. Elliott, D.J. Seidel, and participating AMIP-II modelling
groups, 2002: Lower tropospheric humidity-temperature relationships in
radiosonde observations and atmospheric general circulation models. J.
Hydrometeorol., 3, 26–38.
Russell, G.L., 2005: 4x3 Atmosphere-Ocean Model Documentation. http://
aom.giss.nasa.gov/doc4x3.html.
Russell, G.L., J.R. Miller, and D. Rind, 1995: A coupled atmosphere-ocean
model for transient climate change studies. Atmos.-Ocean, 33, 683–730.
Russell, J.L., R.J. Stouffer, and K.W. Dixon, 2006: Intercomparison of the
Southern Ocean circulations in IPCC coupled model control simulations.
J. Clim., 19, 4560–4575.
Saenko, O.A., and W.J. Merryfi eld, 2005: On the effect of topographicallyenhanced
mixing on the global ocean circulation. J. Phys. Oceanogr.,
35, 826–834.
Saenko, O.A., G.M. Flato, and A.J. Weaver, 2002: Improved representation
of sea-ice processes in climate models. Atmos.-Ocean, 40, 21–43.
Sakamoto, T.T., et al., 2004: Far-reaching effects of the Hawaiian Islands
in the CCSR/NIES/FRCGC high-resolution climate model. Geophys.
Res. Lett., 31, doi:10.1029/2004GL020907.
Sakamoto, T., et al., 2005: Responses of the Kuroshio and the Kuroshio
Extension to global warming in a high-resolution climate model.
Geophys. Res. Lett., 32, L14617, doi:10.1029/2005GL023384.
Salas-Mélia, D., 2002: A global coupled sea ice-ocean model. Ocean
Modelling, 4, 137–172.
Saltzman, B., 1978: A survey of statistical-dynamical models of the
terrestrial climate. Adv. Geophys., 20, 183–295.
Santer, B.D., et al., 2005: Amplifi cation of surface temperature trends and
variability in the tropical atmosphere. Science, 309, 1551–1556.
Sato, N., et al., 1989: Effects of implementing the simple biosphere model
in a general circulation model. J. Atmos. Sci., 46, 2757–2782.
Sausen, R., K. Barthel, and K. Hasselmann, 1988: Coupled oceanatmosphere
models with fl ux correction. Clim. Dyn., 2, 145–163.
Sausen, R., et al., 2002: Climate response to inhomogeneously distributed
forcing agents. In: Non-CO2 Greenhouse Gases: Scientifi c Understanding,
Control Options and Policy Aspects [van Ham, J., A.P.M. Baede, R.
Guicherit, and J.G.F.M. Williams-Jacobse (eds.)]. Millpress, Rotterdam,
Netherlands, pp. 377–381.
Schär, C., et al., 2004: The role of increasing temperature variability for
European summer heat waves. Nature, 427, 332–336, doi:10.1038/
nature02300.
Scaife, A.A., J.R. Knight, C.K. Folland, and G.K. Vallis, 2005: A
stratospheric infl uence on the winter NAO and North Atlantic surface
climate. Geophys. Res. Lett., 32, L18715.
Scaife, A.A., et al., 2000: Realistic quasi-biennial oscillations in a
simulation of the global climate. Geophys. Res. Lett., 27, 3481–3484.
Schiller, A., U. Mikolajewicz, and R. Voss, 1997: The stability of the North
Atlantic thermohaline circulation in a coupled ocean-atmosphere general
circulation model. Clim. Dyn., 13, 325–347.
Schmidt, G.A., C.M. Bitz, U. Mikolajewicz, and L.B. Tremblay, 2004:
Ice-ocean boundary condi tions for coupled models. Ocean Modelling,
7, 59–74.
Schmidt, G.A., et al., 2006: Present day atmospheric simulations using
GISS ModelE: Comparison to in-situ, satellite and reanalysis data. J.
Schmittner, A., and T.F. Stocker, 1999: The stability of the thermohaline
circulation in global warming experiments. J. Clim., 12, 1117–1133.
Schmittner, A., C. Appenzeller, and T.F. Stocker, 2000: Enhanced Atlantic
freshwater export during El Niño. Geophys. Res. Lett., 27, 1163–1166.
Schneider, E.K., 2001: Causes of differences between the equatorial Pacifi c
as simulated by two coupled GCM’s. J. Clim., 15, 2301–2320.
Schneider, S.H., 2004: Abrupt non-linear climate change, irreversibility
and surprise. Global Environ. Change, 14, 245–258.
Schubert, S., et al., 1992: Monthly Means of Selected Climate Variables
for 1985–1989. NASA Technical Memorandum, Goddard Space
Flight Center, Greenbelt, MD, 376 pp. Available from the NASA
Technical Report Server, Accession Number: 92N29653; Document ID:
19920020410; Report Number: NAS 1.15104565, NASA-TM-104565,
REPT-92B00088.
Scinocca, J.F., and N.A. McFarlane, 2004: The variability of modelled
tropical precipitation. J. Atmos. Sci., 61, 1993–2015.
Seidel, D.J., and J.R. Lanzante, 2004: An assessment of three alternatives to
linear trends for characterizing global atmospheric temperature changes.
J. Geophys. Res., 109, D14108, doi:10.1029/2003JD004414.
Seidov, D., E.J. Barron, and B.J. Haupt, 2001: Meltwater and the global
ocean conveyor: Northern versus southern connections. Global Planet.
Change, 30, 253–266.
Seidov, D., R.J. Stouffer, and B.J. Haupt, 2005: Is there a simple bi-polar
ocean seesaw? Global Planet. Change, 49, 19–27.
Sellers, P.J., Y. Mintz, Y.C. Sud, and A. Dalcher, 1986: A simple biosphere
model (SiB) for use within general circulation models. J. Atmos. Sci.,
43, 505–531.
Selten, F.M., and G. Branstator, 2004: Preferred regime transition routes
and evidence for an unstable periodic orbit in a baroclinic model. J.
Atmos. Sci., 61, 2267–2268.
Semtner, A.J., 1976: A model for the thermodynamic growth of sea ice in
numerical investigations of climate. J. Phys. Oceanogr., 6, 379–389.
Seneviratne, S.I., J.S. Pal, E.A.B. Eltahir, and C. Schär, 2002: Summer
dryness in a warmer climate: A process study with a regional climate
model. Clim. Dyn., 20, 69–85.
Senior, C.A., and J.F.B. Mitchell, 1993: Carbon dioxide and climate: The
impact of cloud parameterization. J. Clim., 6, 393–418.
Senior, C.A., and J.F.B. Mitchell, 2000: The time dependence of climate
sensitivity. Geophys. Res. Lett., 27, 2685–2688.
Severijns, C.A., and W. Hazeleger, 2005: Optimising parameters in an
atmospheric general circulation model. J. Clim., 18, 3527–3535.
Shaffrey, L., and R. Sutton, 2004: The interannual variability of energy
transports within and over the Atlantic Ocean in a coupled climate model.
J. Clim., 17, 1433–1448.
Shibata, K., et al., 1999: A simulation of troposphere, stratosphere and
mesosphere with an MRI/JMA98 GCM. Papers in Meteorology and
Geophysics, 50, 15–53.
Shindell, D.T., R.L. Miller, G.A. Schmidt, and L. Pandolfo, 1999:
Simulation of recent northern winter climate trends by greenhouse-gas
forcing. Nature, 399, 452–455.
Shiogama, H., M. Watanabe, M. Kimoto, and T. Nozawa, 2005:
Anthropogenic and natural forcing impacts on the Pacifi c Decadal
Oscillation during the second half of the 20th century. Geophys. Res.
Lett., 32, L21714, doi:10.1029/2005GL023871.
Shukla, J., et al., 2006: Climate model fi delity and projections of climate
change. Geophys. Res. Lett., 33, L07702, doi:10.1029/2005GL025579.
Sinclair, M.R., 1996: A climatology of anticyclones and blocking for the
Southern Hemisphere. Mon. Weather Rev., 124, 245–263.
Sitch, S., et al., 2003: Evaluation of ecosystem dynamics, plant geography
and terrestrial carbon cycling in the LPJ dynamic global vegetation
model. Global Change Biol., 9, 161–185.
Six, K.D., and E. Maier-Reimer, 1996: Effects of plankton dynamics on
seasonal carbon fl uxes in an ocean general circulation model. Global
Biogeochem. Cycles, 10, 559–583.
Slater, A.G., et al., 2001: The representation of snow in land-surface
schemes: Results from PILPS 2(d). J. Hydrometeorol., 2, 7–25.
Slingo, J.M., P.M. Inness, and K.R. Sperber, 2005: Modelling the Madden
Julian Oscillation. In: Intraseasonal Variability of the Atmosphere-
Ocean Climate System [Lau, W.K.-M., and D.E. Waliser (eds.)]. Praxis
Publishing.
Slingo, J.M., et al., 1996: Intraseasonal oscillations in 15 atmospheric
general circulation models: Results from an AMIP Diagnostic Subproject.
Clim. Dyn., 12, 325–357.
Slingo, J., et al., 2003: Scale interactions on diurnal to seasonal timescales
and their relevance to model systematic errors. Ann. Geophys., 46, 139–
155.
Smith, R.D., and P.R. Gent, 2002: Reference Manual for the Parallel
Ocean Program (POP), Ocean Component of the Community Climate
System Model (CCSM2.0 and 3.0). Technical Report LA-UR-02-2484,
Los Alamos National Laboratory, Los Alamos, NM, http://www.ccsm.
ucar.edu/models/ccsm3.0/pop/.
Soden, B.J., 1997: Variations in the tropical greenhouse effect during El
Niño. J. Clim., 10(5), 1050–1055.
Soden, B.J., 2000: The sensitivity of the tropical hydrological cycle to
ENSO. J. Clim., 13, 538–549.
Soden, B.J., 2004: The impact of tropical convection and cirrus on upper
tropospheric humidity: A Lagrangian analysis of satellite measurements.
Geophys. Res. Lett., 31, L20104, doi:10.1029/2004GL020980.
Soden, B.J., and I.M. Held, 2006: An assessment of climate feedbacks in
coupled ocean-atmosphere models. J. Clim., 19, 3354–3360.
Soden, B.J., A.J. Broccoli, and R.S. Hemler, 2004: On the use of cloud
forcing to estimate cloud feedback. J. Clim., 17, 3661–3665.
Soden, B.J., R.T. Wetherald, G.L. Stenchikov, and A. Robock, 2002: Global
cooling after the eruption of Mount Pinatubo: A test of climate feedback
by water vapour. Science, 296, 727–730.
Soden, B.J., et al., 2005: The radiative signature of upper tropospheric
moistening. Science, 310(5749), 841–844.
Sohn, B.-J., and J. Schmetz, 2004: Water vapor-induced OLR variations
associated with high cloud changes over the tropics: a study from
Meteosat-5 observations. J. Clim., 17, 1987–1996.
Sokolov, A., and P. Stone, 1998: A fl exible climate model for use in
integrated assessments. Clim. Dyn., 14, 291–303.
Sokolov, A.P., et al., 2005: The MIT Integrated Global System Model
(IGSM), Version 2: Model Description And Baseline Evaluation. Report
No. 124, Joint Program on the Science and Policy of Global Change,
Massachusetts Institute of Technology, Cambridge, MA, http://web.mit.
edu/globalchange/www/MITJPSPGC_Rpt124.pdf.
Spelman, M.J., and S. Manabe, 1984: Infl uence of oceanic heat transport
upon the sensitivity of a model climate. J. Geophys. Res., 89, 571–586.
Sperber, K.R., S. Gualdi, S. Legutke, and V. Gayler, 2005: The Madden-
Julian Oscillation in ECHAM4 coupled and uncoupled GCMs. Clim.
Dyn., 25, doi:10.1007/s00382-005-0026-3.
Stainforth, D.A., et al., 2005: Uncertainty in predictions of the climate
response to rising levels of greenhouse gases. Nature, 433, 403–406.
Stein, O., 2000: The variability of Atlantic-European blocking as derived
from long SLP time series. Tellus, 52A, 225–236.
Stenchikov, G., et al., 2002: Arctic Oscillation response to the 1991 Mount
Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J.
Geophys. Res., 107(D24), 4803.
Stephens, G.L., 2005: Cloud feedbacks in the climate system: a critical
review. J. Clim., 18, 237–273.
Stephenson, D.B., and V. Pavan, 2003: The North Atlantic Oscillation in
coupled climate models: a CMIP1 evaluation. Clim. Dyn., 20, 381–399.
Stephenson, D.B., A. Hannachi, and A. O’Neill, 2004: On the existence of
multiple climate regimes. Q. J. R. Meteorol. Soc., 130, 583–605.
Stocker, T.F., D.G. Wright, and L.A. Mysak, 1992: A zonally averaged,
coupled atmosphere-ocean model for paleoclimate studies. J. Clim., 5,
773–797.
Stocker, T.F., et al., 2001: Physical climate processes and feedbacks. In:
Climate Change 2001: The Scientifi c Basis. Contribution of Working
Group I to the Third Assessment Report of the Intergovernmental Panel
on Climate Change [Houghton, J.T., et al. (eds.)]. Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, pp. 419–
470.
Stommel, H., 1961: Thermohaline convection with two stable regimes of
fl ow. Tellus, 13, 224–230.
Stouffer, R.J., 2004: Time scales of climate response. J. Clim., 17(1),
209–217.
Stouffer, R.J., and K.W. Dixon, 1998: Initialization of Coupled Models for
Use in Climate Studies: A Review. Research Activities in Atmospheric
and Oceanic Modelling, Report No. 27, WMO/TD-No. 865, World
Meteorological Organization, Geneva, Switzerland, I.1–I.8.
Stouffer, R.J., and S. Manabe, 2003: Equilibrium response of thermohaline
circulation to large changes in atmospheric CO2 concentration. Clim.
Dyn., 20(7/8), 759–773.
Stouffer, R.J., A.J. Weaver, and M. Eby, 2004: A method for obtaining pretwentieth
century initial conditions for use in climate change studies.
Clim. Dyn., 23, 327–339.
Stouffer, R.J., et al., 2006: Investigating the causes of the response of the
thermohaline circulation to past and future climate changes. J. Clim., 19,
1365–1387.
Stowasser, M., and K. Hamilton, 2006: Relationship between shortwave
cloud radiative forcing and local meteorological variables compared
in observations and several global climate models. J. Clim., 19, 4344–
4359.
Stowasser, M., K. Hamilton, and G.J. Boer, 2006: Local and global climate
feedbacks in models with differing climate sensitivity. J. Clim., 19, 193–
209.
Stratton, R.A., and V.D. Pope, 2004: Modelling the climatology of storm
tracks - Sensitivity to resolution. In: The Second Phase of the Atmospheric
Model Intercomparison Project (AMIP2) [Gleckler, P. (ed.)]. Proceedings
of the WCRP/WGNE Workshop, Toulouse, pp. 207-210.
Stuber, N., M. Ponater, and R. Sausen, 2001: Is the climate sensitivity to
ozone perturbations enhanced by stratospheric water vapor feedback?
Geophys. Res. Lett., 28, doi:10.1029/2001GL013000.
Stuber, N., M. Ponater, and R. Sausen, 2005: Why radiative forcing might
fail as a predictor of climate change. Clim. Dyn., 24, 497–510.
Sud, Y.C., and G.K. Walker, 1999: Microphysics of clouds with the relaxed
Arakawa-Schubert Cumulus Scheme (McRAS). Part I: Design and
evaluation with GATE Phase III data. J. Atmos. Sci., 56, 3196–3220.
Sugi, M., A. Noda, and N. Sato, 2002: Infl uence of the global warming on
tropical cyclone climatology: An experiment with the JMA global model.
J. Meteorol. Soc. Japan, 80, 249–272.
Sun, D.-Z., and I.M. Held, 1996: A comparison of modeled and observed
relationships between interannual variations of water vapor and
temperature. J. Clim., 9, 665–675.
Sun, D.-Z., C. Covey, and R.S. Lindzen, 2001: Vertical correlations of
water vapor in GCMs. Geophys. Res. Lett., 28, 259–262.
Sun, Y., S. Solomon, A. Dai, and R. Portmann, 2006: How often does it
rain? J. Clim., 19, 916–934.
Suzuki, T., et al., 2005: Projection of future sea level and its variability
in a high-resolution climate model: Ocean processes and Greenland
and Antarctic ice-melt contributions. Geophys. Res. Lett., 32, L19706,
doi:10.1029/2005GL023677.
Takahashi, M., 1996: Simulation of the stratospheric quasi-biennial
oscillation using a general circulation model. Geophys. Res. Lett., 23,
661–664.
Takahashi, M., 1999: The fi rst realistic simulation of the stratospheric
quasi-biennial oscillation in a general circulation model. Geophys. Res.
Lett., 26, 1307–1310.
Takemura, T., et al., 2002: Single scattering albedo and radiative forcing of
various aerosol species with a global three-dimensional model. J. Clim.,
15, 333–352.
Takemura, T., et al., 2005: Simulation of climate response to aerosol direct
and indirect effects with aerosol transport-radiation model. J. Geophys.
Res., 110, D02202, doi:10.1029/2004JD005029.
Tang, Y.M., and M.J. Roberts, 2005: The impact of a bottom boundary
layer scheme on the North Atlantic Ocean in a global coupled climate
model. J. Phys. Oceanogr., 35(2), 202–217.
Terray, L., S. Valcke, and A. Piacentini, 1998: OASIS 2.2 Guide and
Reference Manual. Technical Report TR/CMGC/98-05, Centre Europeen
de Recherche et de Formation Avancée en Calcul Scientifi que, Toulouse,
France.
Thompson, C.J., and D.S. Battisti, 2001: A linear stochastic dynamical
model of ENSO. Part II: Analysis. J. Clim., 14, 445–466.
Thompson, D.W.J., and J.M. Wallace, 2000: Annular modes in the
extratropical circulation. Part I: Month-to-month variability. J. Clim., 13,
1000–1016.
Thompson, D.W.J., and S. Solomon, 2002: Interpretation of recent Southern
Hemisphere climate change. Science, 296, 895–899.
Thorndike, A.S., D.A. Rothrock, G.A. Maykut, and R. Colony, 1975: The
thickness distribution of sea ice. J. Geophys. Res., 80, 4501–4513.
Thorpe, R.B., R.A. Wood, and J.F.B. Mitchell, 2004: The sensitivity of
the thermohaline circulation response to preindustrial and anthropogenic
greenhouse gas forcing to the parameterisation of mixing across the
Greenland-Scotland ridge. Ocean Modelling, 7, 259–268.
Thorpe, R.B., et al., 2001: Mechanisms determining the Atlantic
thermohaline circulation response to greenhouse gas forcing in a nonfl
ux-adjusted coupled climate model. J. Clim., 14, 3102–3116.
Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon.
Weather Rev., 121, 3040–3061
Timmermann, A., and H. Goosse, 2004: Is the wind stress forcing essential
for the meridional overturning circulation? Geophys. Res. Lett., 31(4),
L04303, doi:10.1029/2003GL018777.
Tomé, A., and P.M.A. Miranda, 2004: Piecewise linear fi tting and trend
changing points of climate parameters. Geophys. Res. Lett., 31, L02207,
doi:10.1029/2003GL019100.
Tompkins, A., 2002: A prognostic parameterization for the subgrid-scale
variability of water vapor and clouds in large-scale models and its use to
diagnose cloud cover. J. Atmos. Sci., 59, 1917–1942.
Tompkins, A.M., and G.C. Craig, 1999: Sensitivity of tropical convection
to sea surface temperature in the absence of large-scale fl ow. J. Clim.,
12, 462–476.
Toyota, T., et al., 2004: Thickness dis tribution, texture and stratigraphy, and
a simple probabilistic model for dynamical thick ening of sea ice in the
southern Sea of Okhotsk. J. Geophys. Res., 109, C06001, doi:10.1029/
2003JC002090.
Trenberth, K.E., and J.M. Caron, 2001: Estimates of meridional atmosphere
and ocean heat transports. J. Clim., 14, 3433–3443.
Trenberth, K.E., J. Fasullo, and L. Smith, 2005: Trends and variability in
column-integrated atmospheric water vapour. Clim. Dyn., 24, 741–758.
Trenberth, K.E., D.P. Stepaniak, J.W. Hurrel, and M. Fiorino, 2001: Quality
of re-analyses in the tropics. J. Clim., 14, 1499–1510.
Trenberth, K.E., et al., 1998: Progress during TOGA in understanding
and modeling global teleconnection associated with tropical sea surface
temperatures. J. Geophys. Res., 103, 14291–14324.
Trigo, R.M., I.F. Trigo, C.C. DaCamra, and T.J. Osborn, 2004: Climate
impact of the European winter blocking episodes from the NCEP/NCAR
reanalyses. Clim. Dyn., 23, 17–28.
Tselioudis, G., and W.B. Rossow, 1994: Global, multiyear variations of
optical-thickness with temperature in low and cirrus clouds. Geophys.
Res. Lett., 21, 2211–2214
Tselioudis, G., and W.B. Rossow, 2006: Climate feedback implied by
observed radiation and precipitation changes with midlatitude storm
strength and frequency. Geophys. Res. Lett., 33, L02704, doi:10.1029/
2005GL024513.
Tselioudis, G., Y.-C. Zhang, and W.R. Rossow, 2000: Cloud and radiation
variations associated with northern midlatitude low and high sea level
pressure regimes. J. Clim., 13, 312–327.
Tsushima, Y., A. Abe-Ouchi, and S. Manabe, 2005: Radiative damping
of annual variation in global mean surface temperature: Comparison
between observed and simulated feedback. Clim. Dyn., 24, 591–597,
doi:10.1007/s00382-005-0002-y.
Tsushima, Y., et al., 2006: Importance of the mixed-phase cloud
distribution in the control climate for assessing the response of clouds to
carbon dioxide increase: a multi-model study. Clim. Dyn., 27, 113–126,
doi:10.1007/s00382-006-0127-7.
Turner, A.G., P.M. Inness and J.M. Slingo, 2005: The role of the basic state
in monsoon prediction. Q. J. R. Meteorol. Soc., 131, 781–804.
Uppala, S.M., et al., 2005: The ERA-40 Reanalysis. Q. J. R. Meteorol.
Soc., 131, 2961–3012, doi:10.1256/qj.04.176.
Valcke, S., E. Guilyardi, and C. Larsson, 2006: PRISM and ENES:
A European approach to Earth system modelling. Concurrency and
Computation: Practice and Experience, 18(2), 247–262.
Van Oldenborgh, G.J., S.Y. Philip, and M. Collins, 2005: El Nino in a
changing climate: a multi-model study. Ocean Sci., 1, 81–95.
Vallis, G.K., E.P. Gerber, P.J. Kushner, and B.A. Cash, 2004: A mechanism
and simple dynamical model of the North Atlantic Oscillation and
Annular Modes. J. Atmos. Sci., 61, 264 –280.
Vavrus, S., 2004: The impact of cloud feedbacks on Arctic climate under
greenhouse forcing. J. Clim., 17, 603–615.
Vavrus, S., and S.P. Harrison, 2003: The impact of sea-ice dynamics on the
Arctic climate system. Clim. Dyn., 20, 741–757.
Vavrus, S., J.E. Walsh, W.L. Chapman, and D. Portis, 2006: The behavior of
extreme cold air outbreaks under greenhouse warming. Int. J. Climatol.,
26, 1133–1147.
Vellinga, M., and R.A. Wood, 2002: Global climate impacts of a collapse
of the Atlantic thermohaline circulation. Clim. Change, 54, 251–267.
Vellinga, M., R.A.Wood, and J.M. Gregory, 2002: Processes governing the
recovery of a perturbed thermohaline circulation in HadCM3. J. Clim.,
15, 764–780.
Verseghy, D.L., N.A. McFarlane, and M. Lazare, 1993: A Canadian land
surface scheme for GCMs: II. Vegetation model and coupled runs. Int. J.
Climatol., 13, 347–370.
Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specifi cation of
eddy transfer coeffi cients in coarse-resolution ocean circulation models.
J. Phys. Oceanogr., 27, 381–402.
Volodin, E.M., 2004: Relation between the global-warming parameter and
the heat balance on the Earth’s surface at increased contents of carbon
dioxide. Izv. Atmos. Ocean. Phys., 40, 269–275.
Volodin, E.M., and V.N. Lykossov, 1998: Parameterization of heat and
moisture processes in the soil-vegetation system: 1. Formulation and
simulations based on local observational data. Izv. Atmos. Ocean. Phys.,
34(4), 453–465.
Volodin, E.M., and N.A. Diansky, 2004: El-Niño reproduction in a coupled
general circulation model of atmosphere and ocean. Russ. Meteorol.
Hydrol., 12, 5–14.
Waliser, D.E., K.M. Lau, and J.H. Lim, 1999: The infl uence of coupled
sea surface temperatures on the Madden–Julian oscillation: A model
perturbation experiment. J. Atmos. Sci., 56, 333–358.
Wallace, J.M., Y. Zhang, and L. Bajuk, 1996: Interpretation of interdecadal
trends in Northern Hemisphere surface air temperature. J. Clim., 9, 249–
259.
Walsh, J.E., et al., 2002: Comparison of Arctic climate simulations by
uncoupled and coupled global models. J. Clim., 15, 1429–1446.
Walsh, K.J.E., K.C. Nguyen and J.L. McGregor, 2004: Fine-resolution
regional climate model simulations of the impact of climate change on
tropical cyclones near Australia. Clim. Dyn., 22, 47–56.
Wang, B., et al., 2004: Design of a new dynamical core for global
atmospheric models based on some effi cient numerical methods. Science
in China, Ser. A, 47 Suppl., 4–21.
Wang, G.L., and E.A.B. Eltahir, 2000: Ecosystem dynamics and the Sahel
drought. Geophys. Res. Lett., 27, 795–798.
Wang, J., H.L. Cole, and D.J. Carlson, 2001: Water vapor variability in the
tropical western Pacifi c from 20-year radiosonde data. Adv. Atmos. Sci.,
18(5), 752–766.
Wang, L.R., and M. Ikeda, 2004: A Lagrangian description of sea ice
dynamics using the fi nite element method. Ocean Modelling, 7, 21–38.
Wang, S., R.F. Grant, D.L. Verseghy, and T.A. Black, 2002: Modelling
carbon dynamics of boreal forest ecosystems using the Canadian land
surface scheme. Clim. Change, 55, 451–477.
Wang, W., and M. Schlesinger, 1999: The dependence on convection
parameterization of the tropical intraseasonal oscillation simulated by the
UIUC 11-layer atmospheric GCM. J. Clim., 12, 1423–1457.
Wang, X.L.L., V.R. Swai, and F.W. Zwiers, 2006: Climatology and changes
of extratropical cyclone activity: Comparison of ERA-40 with NCEPNCAR
reanalysis for 1958-2001. J. Clim., 19, 3145–3166.
Warrach, K., H.T. Mengelkamp, and E. Raschke, 2001: Treatment of
frozen soil and snow cover in the land surface model SEWAB. Theor.
Appl. Climatol., 69(1–2), 23–37.
Washington, W.M., et al., 2000: Parallel Climate Model (PCM) control and
transient simulations. Clim. Dyn., 16, 755–774.
Watterson, I.G., 2001: Zonal wind vacillation and its interaction with
the ocean: Implications for interannual variability and predictability. J.
Geophys. Res., 106, 23965–23975.
Watterson, I.G., 2006: The intensity of precipitation during extratropical
cyclones in global warming simulations: a link to cyclone intensity? Tellus,
58A, 82–97.
Weare, B.C., 2004: A comparison of AMIP II model cloud layer properties
with ISCCP D2 estimates. Clim. Dyn., 22, 281–292.
Weaver, A.J., O.A. Saenko, P.U. Clark, and J.X. Mitrovica, 2003:
Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød
warm interval. Science, 299, 1709–1713.
Weaver, A.J., et al., 2001: The UVic Earth System Climate Model: Model
description, climatology and application to past, present and future
climates. Atmos.-Ocean, 39, 361–428.
Webb, M., C. Senior, S. Bony, and J.-J. Morcrette, 2001: Combining ERBE
and ISCCP data to assess clouds in the Hadley Centre ECMWF and LMD
atmospheric climate models. Clim. Dyn., 17, 905–922.
Webb, M.J., et al., 2006: On the contribution of local feedback mechanisms
to the range of climate sensitivity in two GCM ensembles. Clim. Dyn.,
27, 17–38.
Wentz, F.J., and M. Schabel, 2000: Precise climate monitoring using
complementary satellite data sets. Nature, 403, 414–416.
Wigley, T.M.L., and S.C.B. Raper, 1992: Implications for climate and sea
level of revised IPCC emissions scenarios. Nature, 357, 293–300.
Wigley, T.M.L., and S.C.B. Raper, 2001: Interpretation of high projections
for global-mean warming. Science, 293, 451–454.
Wild, M., 2005: Solar radiation budgets in atmospheric model
intercomparisons from a surface perspective. Geophys. Res. Lett., 32,
doi:10.1029/2005GL022421.
Wild, M., C.N. Long, and A. Ohmura, 2006: Evaluation of clear-sky
solar fl uxes in GCMs participating in AMIP and IPCC-AR4 from
a surface perspective. J. Geophys. Res., 111, D01104, doi:10.1029/
2005JD006118.
Wild, M., et al., 2001: Downward longwave radiation in General Circulation
Models. J. Clim., 14, 3227–3239.
Williams, K.D., M.A. Ringer, and C.A. Senior, 2003: Evaluating the cloud
response to climate change and current climate variability. Clim. Dyn.,
20(7–8), 705–721.
Williams, K.D., et al., 2006: Evaluation of a component of the cloud
response to climate change in an intercomparison of climate models.
Clim. Dyn., 26, 145–165.
Williamson, D.L., et al., 2005: Moisture and temperature balances at the
Atmospheric Radiation Measurement Southern Great Plains Site in
forecasts with the Community Atmosphere Model (CAM2). J. Geophys.
Res., 110, D15S16, doi:10.1029/2004JD00510.
Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos.
Ocean. Technol., 17(4), 525–531.
Winton, M., 2006a: Surface albedo feedback estimates for the AR4 climate
models. J. Clim., 19, 359–365.
Winton, M., 2006b: Amplifi ed Arctic climate change: what does surface
albedo feedback have to do with it? Geophys. Res. Lett., 33, L03701,
doi:10.1029/2005GL025244.
Winton, M., R. Hallberg, and A. Gnanadesikan, 1998: Simulation of
density-driven frictional downslope fl ow in z-coordinate ocean models.
J. Phys. Oceanogr., 28, 2163–2174.
Wittenberg, A.T., A. Rosati, N.-C. Lau, and J.J. Ploshay, 2006: GFDL’s
CM2 global coupled climate models, Part 3: Tropical Pacifi c climate and
ENSO. J. Clim., 19, 698–722.
Wolff, J.-O., E. Maier-Reimer, and S. Lebutke, 1997: The Hamburg Ocean
Primitive Equation Model. DKRZ Technical Report No. 13, Deutsches
KlimaRechenZentrum, Hamburg, Germany, 100 pp., http://www.mad.
zmaw.de/Pingo/reports/ReportNo.13.pdf.
Wood, R.A., A.B. Keen, J.F.B. Mitchell, and J.M. Gregory, 1999:
Changing spatial structure of the thermohaline circulation in response to
atmospheric CO2 forcing in a climate model. Nature, 399, 572–575.
Wright, D.G., and T.F. Stocker, 1992: Sensitivities of a zonally averaged
global ocean circulation model. J. Geophys. Res., 97, 12707–12730.
Wright, D.G., and T.F. Stocker, 1993: Younger Dryas experiments. In: Ice
in the Climate System, NATO ASI Series, I12 [Peltier, R. (ed.)]. Springer-
Verlag, London, pp. 395–416.
Wu, P., R.A. Wood, and P. Stott, 2005: Human infl uence on increasing
Arctic river discharges. Geophys. Res. Lett., 32, L02703, doi:10.1029/
2004GL021570.
Wu, Q., and D.M. Straus, 2004a: On the existence of hemisphere-wide
climate variations. J. Geophys. Res., 109, D06118, doi:10.1029/
2003JD004230.
Wu, Q., and D.M. Straus, 2004b: AO, COWL, and observed climate trends.
J. Clim., 17, 2139–2156.
Wunsch, C., 2002: What is the thermohaline circulation? Science, 298,
1179–1180.
Wyant, M.C., et al., 2006: A comparison of low-latitude cloud properties
and their response to climate change in three US AGCMs sorted into
regimes using mid-tropospheric vertical velocity. Clim. Dyn., 27, 261–
279.
Xie, P., and P.A. Arkin, 1997: Global precipitation: A 17-year monthly
analysis based on gauge observations, satellite estimates, and numerical
model outputs. Bull. Am. Meteorol. Soc., 78, 2539–2558.
Xie, S.-P., W.T. Liu, Q. Liu and M. Nonaka, 2001: Far-reaching effects of
the Hawaiian Islands on the Pacifi c ocean-atmosphere system. Science,
292, 2057–2060.
Xu, Y., et al., 2005: Detection of climate change in the 20th century by
the NCC T63. Acta Meteorol. Sin., Special Report on Climate Change,
4, 1–15.
Yang, G.Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon.
Weather Rev., 129, 784–801.
Yang, G.Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled
equatorial waves: A new methodology for identifying wave structures in
observational data. J. Atmos. Sci., 60, 1637–1654.
Yao, M.-S., and A. Del Genio, 2002: Effects of cloud parameterization on
the simulation of climate changes in the GISS GCM. Part II: Sea surface
temperature and cloud feedbacks. J. Clim., 15, 2491–2503.
Yeh, P. J.-F., and E.A.B. Eltahir, 2005: Representation of water table
dynamics in a land surface scheme. Part 1. Model development. J. Clim.,
18, 1861–1880.
Yeh, S.-W., and B.P. Kirtman, 2004: Decadal North Pacifi c sea surface
temperature variability and the associated global climate anomalies
in a coupled GCM. J. Geophys. Res., 109, D20113, doi:10.1029/
2004JD004785.
Yin, H., 2005: A consistent poleward shift of the storm tracks in simulations
of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/
2005GL023684.
Yiou, P., and M. Nogaj, 2004: Extreme climatic events and weather
regimes over the North Atlantic: When and where? Geophys. Res. Lett.,
31, doi:10.1029/2003GL019119.
Yokohata, T., et al., 2005: Climate response to volcanic forcing: Validation
of climate sensitivity of a coupled atmosphere-ocean general circulation
model. Geophys. Res. Lett., 32, L21710, doi:10.1029/2005GL023542.
Yoshimura, J., M. Sugi, and A. Noda, 2006: Infl uence of greenhouse
warming on tropical cyclone frequency. J. Meteorol. Soc. Japan, 84,
405–428.
Yoshizaki, M., et al., 2005: Changes of Baui (Mei-yu) frontal activity in the
global warming climate simulated by a non-hydrostatic regional model.
Scientifi c Online Letters on the Atmosphere, 1, 25–28.
Yu, Y., and X. Zhang, 2000: Coupled schemes of fl ux adjustments of the
air and sea. In: Investigations on the Model System of the Short-Term
Climate Predictions [Ding, Y., et al. (eds.)]. China Meteorological Press,
Beijing, China, pp. 201–207 (in Chinese).
Yu, Y., Z. Zhang, and Y. Guo, 2004: Global coupled ocean-atmosphere
general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444–455.
Yu, Y., R. Yu, X. Zhang, and H. Liu, 2002: A fl exible global coupled climate
model. Adv. Atmos. Sci., 19(1), 169–190.
Yukimoto, S., and A. Noda, 2003: Improvements of the Meteorological
Research Institute Global Ocean-Atmosphere Coupled GCM (MRIGCM2)
and its Climate Sensitivity. CGER’s Supercomputing Activity
Report, National Institute for Environmental Studies, Ibaraki, Japan.
Yukimoto, S., et al., 2001: The new Meteorological Research Institute
global ocean-atmosphere coupled GCM (MRI-CGCM2)--Model climate
and variability. Papers in Meteorology and Geophysics, 51, 47–88.
Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003,
doi:10.1029/2004RG000158.
Zhang, C., B. Mapes, and B.J. Soden, 2003: Bimodality of water vapour.
Q. J. R. Meteorol. Soc., 129, 2847–2866.
Zhang, J., and D. Rothrock, 2001: A thickness and enthalpy distribution
sea-ice model. J. Phys. Oceanogr., 31, 2986–3001.
Zhang, J., and D. Rothrock, 2003: Modeling global sea ice with a thickness
and enthalpy distribution model in generalized curvilinear coordinates.
Mon. Weather Rev., 131, 845–861.
Zhang, M., 2004: Cloud-climate feedback: how much do we know? In:
Observation, Theory, and Modeling of Atmospheric Variability, World
Scientifi c Series on Meteorology of East Asia, Vol. 3 [Zhu et al. (eds.)].
World Scientifi c Publishing Co., Singapore, 632 pp.
Zhang, M.H., R.D. Cess, J.J. Hack, and J.T. Kiehl, 1994: Diagnostic study
of climate feedback processed in atmospheric general circulation models.
J. Geophys. Res., 99, 5525–5537.
Zhang, M.H., et al., 2005: Comparing clouds and their seasonal variations
in 10 atmospheric general circulation models with satellite measurements.
J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.
Zhang, X., and J.E. Walsh, 2006: Toward a seasonally ice-covered Arctic
Ocean: scenarios from the IPCC AR4 model simulations. J. Clim., 19,
1730–1747.
Zhang, Y., W. Maslowski, and A.J. Semtner, 1999: Impacts of mesoscale
ocean currents on sea ice in high-resolution Arctic ice and ocean
simulations. J. Geophys. Res., 104(C8), 18409–18429.
Zhu, Y., R.E. Newell, and W.G. Read, 2000: Factors controlling uppertroposphere
water vapour. J. Clim., 13, 836–848.

Lenke til kommentar

 

 

*snipp*

Igjen et svar uten et snev av hva jeg spurte om.

Lettvinnt å påstå alt det du har påstått i denne debatten, for så å bare søke på Global Warming, på google, for så å klikke deg inn på wikipedia og komme tilbake hit å peke på en refferanseliste der... Og late som om du har vunnet debatten, osv.

 

Du har sannsynligvis ikke sett på noe av det selv...

Jeg ser ikke noen grunn til videre snikksnakk med deg, for jeg får ikke noen linker til noen journal eller liknende som du har snakket så varmt om...

 

Og ikke kom med det pisset der om at jeg bare er interessert i å underbygge ting som støtter opp om min politiske ideologi. You see, min ideologi er ikke avhengig av dette.

Tror du det tror du svært feil. Om det er noe sånt som menneskeskapte klimaendringer, så er min ideologi bedre enn din også her, slik jeg ser det...

 

Det har ingenting med å vinne debatten å gjøre, det er ett godt utgangpunkt om man vil sette seg dypere inn i materien, at det er enkelt å finne fram referanser er sant, det er enkelt, det er forsket ganske mye på det. Les IPCC-rapporten da, om du ikke liker wikipedia sine refranser.

 

Du viser nok engang at du er totalt uinteressert i å ta til deg informasjon om dette, du er ikke nysgjerrig på hva vitenskapen sier, eller opptatt av å finne sannheten, du er interessert i å "vinne en debatt"

 

Nei. Det er du som påstår å ha så mye kunnskap om dette, og forsøker å latterliggjøre, men så klarer du ikke annet enn å henvise til en refferanseliste på Wikipedia. Du klarer ikke selv å møte argumentene mine, men dumper en refferanseliste du har funnet på wikipedia etter å ha søkt på 'global oppvarming'.

 

I denne debatten har du snakket mye, uten å egentlig bidratt med så mye.

Vært svær i kjeften. :) Hvem som helst kan jo gjøre det du har gjort...

 

Den informasjonen du ber meg ta til meg, er altså det du har funnet på wikipedia og som du helt sikkert ikke selv har satt deg noe særlig inn i. For da kunne du jo ha forklart fritt ut i fra disse kildene hvordan tingene henger i sammen og fungerer, med kildehenvisninger.

 

Jeg har spurt om ting. Stilt spørsmålstegn ved ting. Men dette klarer du ikke svare på, men bare henvise til en refferanseliste med 20-30 talls kilder som jeg da må pløye igjennom...

 

Bare sånn for å feie vekk den tøvete påstanden din om at det som hindrer deg er at du må gå ett ekestre museklikk, så poster jeg her listen over referanser for klimamodellering her i tråden

 

 

 

*kopi paste av wikipedias refferanseliste*

 

 

Jeg spurte ikke om en refferanseliste. Jeg ville ha et eksempel på en jornual som da beviser og underbygger dine påstander. Jeg har heller ikke sagt at "DE ER FEIL", jeg spør om du kan legge frem noe fakta på bordet...
  • Liker 1
Lenke til kommentar
Gjest Bruker-95147

Har det gått over? Hører ikke så mye om det lenger.

 

 

Nei, vi hører ikke så mye lenger, uten å måtte lete litt, og det er vel fordi det er kjedelig å høre om vår egen destruksjon. Vi hørte ikke om finanskrisen heller, men den kom nå likevel, og ingen må si at det ikke var mange som advarte og forsøkte å få oss til å lytte, men som sagt: det er så kjedelig å høre på sånne som sier det vi ikke liker å høre - vi vil helst bare få spise designer burgeren vår, og gamble videre ..

Lenke til kommentar

 

Anyway: Jeg har ikke lest så mange anerkjente tidskrifter om klimaforskning som da underbygger og beviser at det finnes menneskeskapte klimaendringer. Det er også derfor jeg spør om du har noen gode å vise

Så hvorfor fokuserer du så mye tid og krefter på å diskutere dette? Du påstår at du er "kritisk", men du leser ikke det du er kritisk til? Er det ikke bedre å sette seg inn i temaet før man velger å diskutere det offentlig, fremfor å presentere en påstand? Og hvorfor debatterer du et tema i 11 dager uten å nyansere din egen mening, når du selv vet at du ikke har nok informasjon om temaet?

  • Liker 2
Lenke til kommentar

 

 

 

*snipp*

Igjen et svar uten et snev av hva jeg spurte om.

Lettvinnt å påstå alt det du har påstått i denne debatten, for så å bare søke på Global Warming, på google, for så å klikke deg inn på wikipedia og komme tilbake hit å peke på en refferanseliste der... Og late som om du har vunnet debatten, osv.

 

Du har sannsynligvis ikke sett på noe av det selv...

Jeg ser ikke noen grunn til videre snikksnakk med deg, for jeg får ikke noen linker til noen journal eller liknende som du har snakket så varmt om...

 

Og ikke kom med det pisset der om at jeg bare er interessert i å underbygge ting som støtter opp om min politiske ideologi. You see, min ideologi er ikke avhengig av dette.

Tror du det tror du svært feil. Om det er noe sånt som menneskeskapte klimaendringer, så er min ideologi bedre enn din også her, slik jeg ser det...

 

Det har ingenting med å vinne debatten å gjøre, det er ett godt utgangpunkt om man vil sette seg dypere inn i materien, at det er enkelt å finne fram referanser er sant, det er enkelt, det er forsket ganske mye på det. Les IPCC-rapporten da, om du ikke liker wikipedia sine refranser.

 

Du viser nok engang at du er totalt uinteressert i å ta til deg informasjon om dette, du er ikke nysgjerrig på hva vitenskapen sier, eller opptatt av å finne sannheten, du er interessert i å "vinne en debatt"

 

Nei. Det er du som påstår å ha så mye kunnskap om dette, og forsøker å latterliggjøre, men så klarer du ikke annet enn å henvise til en refferanseliste på Wikipedia. Du klarer ikke selv å møte argumentene mine, men dumper en refferanseliste du har funnet på wikipedia etter å ha søkt på 'global oppvarming'.

 

I denne debatten har du snakket mye, uten å egentlig bidratt med så mye.

Vært svær i kjeften. :) Hvem som helst kan jo gjøre det du har gjort...

 

Den informasjonen du ber meg ta til meg, er altså det du har funnet på wikipedia og som du helt sikkert ikke selv har satt deg noe særlig inn i. For da kunne du jo ha forklart fritt ut i fra disse kildene hvordan tingene henger i sammen og fungerer, med kildehenvisninger.

 

Jeg har spurt om ting. Stilt spørsmålstegn ved ting. Men dette klarer du ikke svare på, men bare henvise til en refferanseliste med 20-30 talls kilder som jeg da må pløye igjennom...

 

Bare sånn for å feie vekk den tøvete påstanden din om at det som hindrer deg er at du må gå ett ekestre museklikk, så poster jeg her listen over referanser for klimamodellering her i tråden

 

 

 

*kopi paste av wikipedias refferanseliste*

 

 

Jeg spurte ikke om en refferanseliste. Jeg ville ha et eksempel på en jornual som da beviser og underbygger dine påstander. Jeg har heller ikke sagt at "DE ER FEIL", jeg spør om du kan legge frem noe fakta på bordet...

 

 

Jeg har foreslått en fin oppsummering for deg, nemlig IPCC-rapporten, den er ett ok sted å begynne om du vil ha noe faglig å sette tenna i. Dette er en oppsummerende rapport jeg har nevnt for deg, begynn der, se hva forskningen sier, og gjør deg opp en mening om det. Min mening er irrelevant, det du må se på er hva forskere mener om saken. (referansene jeg har postet er forøvrig ikke fra wikipedia). Og er det liksom ett argument for noe at det er enkelt å finne referanser om global oppvarming? Det burde jo være bra, din innsatsvilje, om du faktisk ønsker å sette deg inn i dette på egenhånd, virker minimal.

 

Eller spør jeg igjen om du vet hva en journal er for noe? Det virker ikke sånn når du ber om en "Journal som beviser mine påstander".

 

AtW

  • Liker 1
Lenke til kommentar

 

Har det gått over? Hører ikke så mye om det lenger.

Nei, vi hører ikke så mye lenger, uten å måtte lete litt, og det er vel fordi det er kjedelig å høre om vår egen destruksjon. Vi hørte ikke om finanskrisen heller, men den kom nå likevel, og ingen må si at det ikke var mange som advarte og forsøkte å få oss til å lytte, men som sagt: det er så kjedelig å høre på sånne som sier det vi ikke liker å høre - vi vil helst bare få spise designer burgeren vår, og gamble videre ..

 

Joda. Mises forutså og advarte mot finanskrisen som ville komme som et resultat av politikernes økonomiske politikk, og kom med et utrolig godt alternativ: Rendyrket Laissez faire.

Men det får bli en annen debatt. :)

 

 

Anyway: Jeg har ikke lest så mange anerkjente tidskrifter om klimaforskning som da underbygger og beviser at det finnes menneskeskapte klimaendringer. Det er også derfor jeg spør om du har noen gode å vise

Så hvorfor fokuserer du så mye tid og krefter på å diskutere dette?

 

Fordi jeg liker å lese andres tanker i forbindelse med dette.

Da vanlige folk, som er her på forumet. Jeg skriver også på forumet fordi jeg er glad i å skrive. Og jeg kan jo lære en god del av å diskutere med andre også.

 

Du påstår at du er "kritisk", men du leser ikke det du er kritisk til?

Joda. Jeg har jo lest noe, og hørt en del om det.

Jeg er kanskje heller ikke så kritisk som jeg kanskje har gitt uttrykk for. For min del kan det godt eksistere menneskeskapte klimaendringer. Jeg kan forestille meg det.

Men jeg er altså ikke helt overbevist. Og da er vel målet med denne debatten å oppfordre til å komme med så overbevisende argumenter og kilder som mulig. I alle fall, noe i den duren der. Jeg merker meg også at de aller fleste som uttrykker skepsis, blir forsøkt latterliggjort osv. Det er forskere som da blir diskreditert osv. Dette er jo åpenbart noe som vil påvirke "konsensus", i og med at alle som åpner kjeften sin, og er kritiske, vil bli forsøkt uthengt og latterliggjort osv.

 

Dessuten er det en del ting som er relatert til klimaforskningen. Mye forskjelli politikk. Som da selvagt ikke nødvendigvis vil fungere noe særlig bra og være noen god løsning (...). Så har man økonomiske interesser osv. Om du ser i debatten så har jeg jo ikke brukt så mye tid på å benekte klimaendringene osv, men jeg har lagt vekt på andre relaterte ting, som f.eks. disse sterke økonomiske interessene. Og muligheten til å leve godt på subsidier osv.

 

Det jeg forsøker å si: Selv om en ting er sant, er det ikke dermed sagt at alle påstander om samme tingen er sant.

Og selv om noe er sant, så er det ikke dermed sagt at alle løsninger er gode, på problemet (...).

 

Så det er ikke bare en diskusjon hvorvidt noe er sant eller ikke sant. :)

 

Man bruker jo klimapolitikk i en politisk kamp også, for å innføre helt urelevante ting som ikke har noe med klimaet å gjøre.

 

Er det ikke bedre å sette seg inn i temaet før man velger å diskutere det offentlig, fremfor å presentere en påstand? Og hvorfor debatterer du et tema i 11 dager uten å nyansere din egen mening, når du selv vet at du ikke har nok informasjon om temaet?

Men jeg har jo satt meg litt inn i det...

Jeg har bare ikke sett noen klare beviser og dokumentasjon, og forklaringer som er overbevisende fra andre brukere her inne. Noe jeg har spurt om mange mange mange ganger. Jeg blir bare møtt med ridicule.

  • Liker 1
Lenke til kommentar

Forskere blir latterliggjort nå. De ble ikke latterliggjort for 10 år siden, da ble de vennlig oppfordret til å backe opp påstandene sine. Hvis du prøver å bevise via forskning i dag at sola går rundt jorden, så vil du også bli latterliggjort - for konklusjonen er allerede tatt. Det er for sent å prøve å motbevise det nå, det burde du gjort på 90-tallet, da dette faktisk ble debattert seriøst.

Endret av Shruggie
Lenke til kommentar

 

Er det ikke bedre å sette seg inn i temaet før man velger å diskutere det offentlig, fremfor å presentere en påstand? Og hvorfor debatterer du et tema i 11 dager uten å nyansere din egen mening, når du selv vet at du ikke har nok informasjon om temaet?

Men jeg har jo satt meg litt inn i det...

Jeg har bare ikke sett noen klare beviser og dokumentasjon, og forklaringer som er overbevisende fra andre brukere her inne. Noe jeg har spurt om mange mange mange ganger. Jeg blir bare møtt med ridicule.

 

Du kommer heller aldri til å SE klare beviser, for du har ikke den utdanningen som er nødvendig for å se de. Du står selvsagt fritt til å prøve å forstå de, men på samme måte som jeg ikke klarer å diagnostisere kreft, så klarer ikke du å diagnostisere klimaforandring. Eller har jeg misforstått noe, og du er faktisk klimatolog...?

  • Liker 2
Lenke til kommentar

Jeg har foreslått en fin oppsummering for deg, nemlig IPCC-rapporten, den er ett ok sted å begynne om du vil ha noe faglig å sette tenna i. Dette er en oppsummerende rapport jeg har nevnt for deg, begynn der, se hva forskningen sier, og gjør deg opp en mening om det. Min mening er irrelevant, det du må se på er hva forskere mener om saken. (referansene jeg har postet er forøvrig ikke fra wikipedia). Og er det liksom ett argument for noe at det er enkelt å finne referanser om global oppvarming? Det burde jo være bra, din innsatsvilje, om du faktisk ønsker å sette deg inn i dette på egenhånd, virker minimal.

 

Eller spør jeg igjen om du vet hva en journal er for noe? Det virker ikke sånn når du ber om en "Journal som beviser mine påstander".

 

AtW

Jeg skal sette meg mer inn i denne IPCC rapporten.

Så hold your horses. Lurer på om du faktisk har gjort det. :)

Kan du beskrive det som står skrevet i denne rapporten, sånn generelt sett?

 

 

 

 

Er det ikke bedre å sette seg inn i temaet før man velger å diskutere det offentlig, fremfor å presentere en påstand? Og hvorfor debatterer du et tema i 11 dager uten å nyansere din egen mening, når du selv vet at du ikke har nok informasjon om temaet?

Men jeg har jo satt meg litt inn i det...

Jeg har bare ikke sett noen klare beviser og dokumentasjon, og forklaringer som er overbevisende fra andre brukere her inne. Noe jeg har spurt om mange mange mange ganger. Jeg blir bare møtt med ridicule.

 

Du kommer heller aldri til å SE klare beviser, for du har ikke den utdanningen som er nødvendig for å se de.

 

Jeg har klart å se bevisene for evolusjonsteorien, da burde jeg vel klare å se beviser for menneskeskapte klimaendringer også. Det var jo en utrolig god dokumentar laget av Richard Dawkins om dette, som heter så mye som "The Greatest Show on Earth: The Evidence for Evolution".

 

Du står selvsagt fritt til å prøve å forstå de, men på samme måte som jeg ikke klarer å diagnostisere kreft, så klarer ikke du å diagnostisere klimaforandring. Eller har jeg misforstått noe, og du er faktisk klimatolog...?

Det skal ikke være noe problem å forstå noe. Klimatologer er mennesker, ikke overmennesker. Når de har lært noe, så kan alle andre det også.

Så er det det viktigste: Forklaringsmodellene. Evnen til å forklare noe godt til andre slik at det blir forstått, osv. =)

Endret av turbonello
  • Liker 1
Lenke til kommentar

Det skal ikke være noe problem å forstå noe. Klimatologer er mennesker, ikke overmennesker. Når de har lært noe, så kan alle andre det også.

Så er det det viktigste: Forklaringsmodellene. Evnen til å forklare noe godt til andre slik at det blir forstått, osv. =)

Lett å forstå prinsippene, vanskelig å gi saklige motargumenter uten ekspertise. Det får du bare når du hører ekspertene angripe hverandres forskning. Sier legen at du har kreft blir det bedre å spørre en annen lege enn naboen om legen tar feil eller ikke. Den første legen kan godt forklare til deg hvorfor han sier du har kreft ,men du har ikk nok ekspertise til å spørre han hvorfor han ikke gjorde et eller annet, eller mistolket noe

 

Du kan godt studere saken og forstår prinsippene godt nok, men dine argumenter blir aldri like saklige som ekspertene i faget. Dine meninger blir mer basert på troverdighet på forskerne enn vitenskaper selv

 

Det er derfor ekspertenes konsensus som teller mest og er det mest sannsynlig måte å vite sannheten.

 

Likevel har jeg inntrykket du vile heller diskutere hvordan folk debatter saken enn vitenskapen selv. Intersannt nok sier NRK at skeptikerne får mer media dekning enn de som støtter AGW!

Lenke til kommentar

 

Det skal ikke være noe problem å forstå noe. Klimatologer er mennesker, ikke overmennesker. Når de har lært noe, så kan alle andre det også.

Så er det det viktigste: Forklaringsmodellene. Evnen til å forklare noe godt til andre slik at det blir forstått, osv. =)

Lett å forstå prinsippene, vanskelig å gi saklige motargumenter uten ekspertise. Det får du bare når du hører ekspertene angripe hverandres forskning. Sier legen at du har kreft blir det bedre å spørre en annen lege enn naboen om legen tar feil eller ikke. Den første legen kan godt forklare til deg hvorfor han sier du har kreft ,men du har ikk nok ekspertise til å spørre han hvorfor han ikke gjorde et eller annet, eller mistolket noe

 

Du kan godt studere saken og forstår prinsippene godt nok, men dine argumenter blir aldri like saklige som ekspertene i faget. Dine meninger blir mer basert på troverdighet på forskerne enn vitenskaper selv

 

Det er derfor ekspertenes konsensus som teller mest og er det mest sannsynlig måte å vite sannheten.

 

Likevel har jeg inntrykket du vile heller diskutere hvordan folk debatter saken enn vitenskapen selv. Intersannt nok sier NRK at skeptikerne får mer media dekning enn de som støtter AGW!

 

Nå er det jo gjerne sånn at når det er motpoler, så blir folk mer interesserte og engasjerte enn om det ikke er det. Man begynner å lete etter argumenter i mot, og på veien dit, så lærer man veldig mye. Noen tror de bare har svaret. Man bare går ut i fra at det "disse ekspertene sier" er riktig. Man tar det som en selvfølge.

 

Jeg kan vise til en stor amerikansk filosof som da tar opp temaet: Belief in belief:

 

 

Forøvrig har jeg fått noen innskytelser angående den rapporten som ATW oppfordret meg å lese:

 

http://www.dailymail.co.uk/news/article-2420783/Worlds-climate-scientists-confess-Global-warming-just-QUARTER-thought--computers-got-effects-greenhouse-gases-wrong.html

 

http://www.thegwpf.org/leaked-ipcc-report-scientists-global-warming-rate-wrong/

 

http://theconversation.com/scientists-confess-the-attack-on-the-ipcc-that-went-terribly-wrong-18496

 

 

-----------

 

 

Det er forøvrig mye tåpelige greier som kommer som et resultat av dette.

(Som jeg pleier å si: Det er forskjell på å barbere seg og skjære av seg hodet).

 

 

http://www.dagsavisen.no/nyemeninger/alle_meninger/cat1003/subcat1010/thread304486/

 

"Fra 1.september skal man i EU støvsuge med svakere støvsugere for å redde klimaet. Klimabyråkratene stoler ikke lengre på at DU støvsuger riktig, så det er utstedt et omfattende direktiv. Når kommer dette byråkratiske misfosteret til Norge?"

Endret av turbonello
  • Liker 1
Lenke til kommentar

Tips til hvordan forstå kompliserte vitenskapelige konsepter bedre.

 

1. Les en utfyllende artikkel, for eksempel på Wikipedia. Grundig.

 

2. Med beriket ordforråd kan du på et visst nivå lese original forskning. Søk etter den på Google Scholar om det er flere ting du lurer på.

Lenke til kommentar

Opprett en konto eller logg inn for å kommentere

Du må være et medlem for å kunne skrive en kommentar

Opprett konto

Det er enkelt å melde seg inn for å starte en ny konto!

Start en konto

Logg inn

Har du allerede en konto? Logg inn her.

Logg inn nå
×
×
  • Opprett ny...