pertm Skrevet 25. januar 2008 Del Skrevet 25. januar 2008 Joda. uten måtte skrive upp alle mulige utfall..det kan bli MANGE... Uten å si noe mer konkret om hva du skal regne ut sannsynlighet på så er det ikke mulig å gi deg en bedre formel Lenke til kommentar
morgan_kane Skrevet 25. januar 2008 Del Skrevet 25. januar 2008 (endret) hva er hurtigtasten til denne ε med en strek over? det er en slags E. har leita gjennom hele tegnkartet uten hell... Endret 25. januar 2008 av morgan_kane Lenke til kommentar
2ball_ Skrevet 25. januar 2008 Del Skrevet 25. januar 2008 (endret) Joda. uten måtte skrive upp alle mulige utfall..det kan bli MANGE... Uten å si noe mer konkret om hva du skal regne ut sannsynlighet på så er det ikke mulig å gi deg en bedre formel har gitt en eks. oppgave to sider tilbake..(s. 57) Endret 25. januar 2008 av 2ball(s) Lenke til kommentar
teveslave Skrevet 25. januar 2008 Del Skrevet 25. januar 2008 har gitt en eks. oppgave to sider tilbake..(s. 57) I oppgaven du viser til er det greit å tegne et diagram med én terning langs x-aksen og den andre langs y-aksen. Da kan du raskt se hva sannsynligheten for å få den og den summen med to terninger er. Fant et bilde her: http://home.blarg.net/~math/DTABLE.GIF Lenke til kommentar
pertm Skrevet 25. januar 2008 Del Skrevet 25. januar 2008 (endret) har gitt en eks. oppgave to sider tilbake..(s. 57) Litt vanskelig å finne når jeg er på side 24. Det blir: 2: 1/36 3: 2/36 4: 3/36 5: 4/36 6: 5/36 7: 6/36 8: 5/36 9: 4/36 10: 3/36 11: 2/36 12: 1/36 Endret 25. januar 2008 av pertm Lenke til kommentar
aspic Skrevet 29. januar 2008 Del Skrevet 29. januar 2008 Hei! Eg treng litt hjelp her.. Har matteprøve i morgon og slit med akkurat dette: Teikninga gjekk fint (lage tabell, for så å krysse i koordinatsystem). Det eg treng hjelp til er omformingane i B'n =/ *håper på kjappe svar* Lenke til kommentar
Camlon Skrevet 29. januar 2008 Del Skrevet 29. januar 2008 (endret) Hei! Eg treng litt hjelp her.. Har matteprøve i morgon og slit med akkurat dette: Teikninga gjekk fint (lage tabell, for så å krysse i koordinatsystem). Det eg treng hjelp til er omformingane i B'n =/ *håper på kjappe svar* Ok, for å tegne ligningen trenger du å vite hvor nullpunktene er. Dermed løser du for 0=4cos x*(sin x)² i intervalen du oppga. Dette bør du klare og dermed bare gir jeg deg svaret sånn at jeg kan forsette. x= -pi/2, 0, pi/2 Neste steg er å derivere formlen, men det blir litt mye å gjøre å derivere det du har nå. Dermed r=4cos x*(sin x)² r=4cos x(1 -(cos x)²) r=4cos x - 4(cos x)³ Og nå deriverer vi r'= -4sin x - 12(cos x)²(sin x) Løser for null 0 = -4sin x(1+3(cos x)²) x= 0, 3pi/10 Og da burde du klare å tegne grafen. Jeg har ingen ide om hva kartetiske kordinator er, men jeg kan prøve 4xy²=(x²+y²)² x⁴ +2x²y² + y⁴ (cos x)⁴ +2(cos x)²(sin x)² + (sin x)⁴ ((cos x)² +(sin x)²) * (((cos x)² -(sin x)²) + 2(cos x)²(sin x)² (cos x)² -(sin x)² + 2(cos x)²(sin x)² = (cos x)² -1 +(cos x)² + 2(cos x)²(sin x)² 2(cos x)² -1 + 2(cos x)²(sin x)² Jeg kommer ikke lenger, men kanskje noen andre kan hjelpe deg. Endret 29. januar 2008 av Camlon Lenke til kommentar
aspic Skrevet 29. januar 2008 Del Skrevet 29. januar 2008 For å vere heilt ærleg anar eg ikkje kva du gjorde i byrjinga. Eg brukte casio -> table. Der plotta eg inn for r, satt grener på -pi/2, pi/2 og ein pitch på 8/pi. Då fekk eg ut verdiar for r og theta (runding med kryss over). Og slik teikna eg opp kurva. Theta er jo berre vinkelen mellom dei forskjellige punkta, og r er radien utover. Eg kan sitere frå læreboka: "Hvis vi kjenner polarkoordinatane (r, theta) til eit punkt P, er de kartetiske koordinatane (x,y) gitt ved: x = r*cos theta y = r*sin theta Hjalp dette litt? Igjen kan vi sjå frå formelboka: r^2 = x^2 + y^2 Lenke til kommentar
Th0mas Skrevet 29. januar 2008 Del Skrevet 29. januar 2008 Høyden til en rettvinklet trekant er 6cm. La h være lengden til hypotenusen og o være omkretsen til trekanten. Uttrykk h som en funksjon av o. Lenke til kommentar
bellad76 Skrevet 30. januar 2008 Del Skrevet 30. januar 2008 (endret) Høyden til en rettvinklet trekant er 6cm. La h være lengden til hypotenusen og o være omkretsen til trekanten. Uttrykk h som en funksjon av o. Jeg antar da at den ene kateten er lik 6, og hypotenusen er lik h. Ved Pytagoras finner vi at den andre kateten har lengde sqrt[h2-36], slik at omkretsen o = sqrt[h2-36] + h + 6. (sqrt(x) betyr kvadratroten av x) Vi skulle skrive h som funksjon av o, så derfor må vi ordne på denne ligningen slik at vi får h alene på den ene siden, f.eks. på følgende måte: o - h - 6 = sqrt[h2-36] (o - h - 6)2 = h2-36 o2 + h2 + 36 - 2oh - 12o + 12h = h2 - 36 (Vi ser at h2 faller bort på begge sider) 12h - 2oh = -o2 + 12o - 72 h = [-o2 + 12o - 72] / [12 - 2o] Endret 30. januar 2008 av bellad76 Lenke til kommentar
Capiche Skrevet 30. januar 2008 Del Skrevet 30. januar 2008 (endret) Hei, jeg kom bort et svar på en oppgave jeg ikke kan forklare, og derfor trenger akutt hjelp med! Kan noen forklare hvorfor 5^-3=1/125 Oppgaven i tekst: Fem i minus tredje er lik en hunderogtjuefemdel. Eventuelt forklare hvordan man kan regne ut svar når ekspontenen er negativ? Jeg er evig takknemlig for hjelp! Endret 30. januar 2008 av Bakoversveis Lenke til kommentar
endrebjo Skrevet 30. januar 2008 Del Skrevet 30. januar 2008 a^-n = 1 / a^n Altså blir 5^-3 = 1 / 5^3 = 1 / (5*5*5) = 1 / 125 Lenke til kommentar
Capiche Skrevet 30. januar 2008 Del Skrevet 30. januar 2008 Takk! Men er det mulig å forklare hvorfor du tar 1/5^3? Er det som å skrive tallet negativt på en annen måte? Lenke til kommentar
Jaffe Skrevet 30. januar 2008 Del Skrevet 30. januar 2008 1/5^3 er ikke et negativt tall, bare et lite tall (lite som i nærme 0). Det han gjør kommer rett fra definisjonen på potenser med negativ eksponent: a^-n = 1/a^n. F.eks. er 3^-3 = 1/3^3, 9^-123 = 1/9^123. Lenke til kommentar
Th0mas Skrevet 30. januar 2008 Del Skrevet 30. januar 2008 Snip Tusen takk! Det stemte Lenke til kommentar
Bekkalokk93 Skrevet 31. januar 2008 Del Skrevet 31. januar 2008 Hvis man skal regne ut 1,5 promille av 1 200 000 000, skal man ta 10 i niende x 1,2 x 0,015? (1,2 gange 10 i niende gange 0,015) Lenke til kommentar
Valkyria Skrevet 31. januar 2008 Del Skrevet 31. januar 2008 1 200 000 000 / 1000 = 1 200 000 1 200 000 * 1,5 = 1 800 000 Lenke til kommentar
Jaffe Skrevet 31. januar 2008 Del Skrevet 31. januar 2008 Hvis man skal regne ut 1,5 promille av 1 200 000 000, skal man ta 10 i niende x 1,2 x 0,015?(1,2 gange 10 i niende gange 0,015) Nei, du må gange med 0.0015, ikke 0.015. (eller gjøre som Valkyria foreslår) Lenke til kommentar
Camlon Skrevet 31. januar 2008 Del Skrevet 31. januar 2008 (endret) For å vere heilt ærleg anar eg ikkje kva du gjorde i byrjinga. Eg brukte casio -> table. Der plotta eg inn for r, satt grener på -pi/2, pi/2 og ein pitch på 8/pi. Då fekk eg ut verdiar for r og theta (runding med kryss over). Og slik teikna eg opp kurva. Theta er jo berre vinkelen mellom dei forskjellige punkta, og r er radien utover. Eg kan sitere frå læreboka: "Hvis vi kjenner polarkoordinatane (r, theta) til eit punkt P, er de kartetiske koordinatane (x,y) gitt ved: x = r*cos theta y = r*sin theta Hjalp dette litt? Igjen kan vi sjå frå formelboka: r^2 = x^2 + y^2 Jeg klarte den forsatt ikke. Spør læreren din om den oppgaven, men grunnen til at det ikke er bare å gå til table er fordi at kalkulatoren ikke alltid er der for deg og enhver idiot kan tegne en graf på den måten. Hvordan ville du ha løst oppgaven om theta ble byttet den ut med beta? Endret 31. januar 2008 av Camlon Lenke til kommentar
aspic Skrevet 31. januar 2008 Del Skrevet 31. januar 2008 Joda, eg er med deg på det med kalkulatoren. Men no sat vi på ein prøve der vi ikkje har tid til å setje inn og finne verdiar for theta og r manuelt. Læraren ba oss bruke table på kalkulatoren, og difor gjorde vi det Når det gjeld B'n fekk eg hjelp herifrå: http://www.matematikk.net/ressurser/mattep...pic.php?t=17247 Lenke til kommentar
Anbefalte innlegg
Opprett en konto eller logg inn for å kommentere
Du må være et medlem for å kunne skrive en kommentar
Opprett konto
Det er enkelt å melde seg inn for å starte en ny konto!
Start en kontoLogg inn
Har du allerede en konto? Logg inn her.
Logg inn nå