Bebeluv Skrevet 15. september 2010 Del Skrevet 15. september 2010 Takker. Man lærer mer for hver dag man lever. Noen som kan hjelpe meg med denne også? 5x^1/5 y^1/2 der x=4 y=2 Prøvde meg på den fremgangsmåten i går, men da stemmer ikke svaret med fasiten. Fasiten viser 5*2^9/10. Noe som er noe helt annet enn det jeg får. Lenke til kommentar
Torbjørn T. Skrevet 15. september 2010 Del Skrevet 15. september 2010 5*4^(1/5)*2^(1/2) = 5*(2^2)^(1/5)*2^(1/2) = 5*2^(2/5)*2^(1/2) = 5*2^(2/5 + 1/2) So er det berre å summere brøkane i eksponenten, og du får fasitsvaret. Lenke til kommentar
wingeer Skrevet 15. september 2010 Del Skrevet 15. september 2010 (endret) Jeg klarer ikke finne et elegant bevis for at for en funksjon med periode 2pi er . Hjelp? Edit: Hva om jeg sier at er det samme som (p.g.a f(x) er periodisk): , for så å substituere i integralet? Edit2: Ergelig. Kommer meg til , men det blir vel ikke rett. Endret 15. september 2010 av wingeer Lenke til kommentar
wingeer Skrevet 15. september 2010 Del Skrevet 15. september 2010 Det var i hvertfall elegant nok. Lenke til kommentar
Dr. Chaos Skrevet 15. september 2010 Del Skrevet 15. september 2010 Sliter med denne. "Vi har gitt punktene A=(4,7), B=(14, -3) og C=(t + 1, t). a) Bestem t slik at A,B og C blir liggende på en rett linje. b) Bestem t slik at vinkel ACB blir 90'" Hjelp settes stor pris på! Lenke til kommentar
Jaffe Skrevet 15. september 2010 Del Skrevet 15. september 2010 Hvor langt har du kommet da? Har du lært om vektorer så er det den desidert enkleste måten å løse det på. Da vil du i a) at og i b) at . Lenke til kommentar
Dr. Chaos Skrevet 15. september 2010 Del Skrevet 15. september 2010 Åja, selvfølgelig. Det gjorde ting mye klarere. Stod helt fast der fordi arbeidsevnen har vært dramatisk redusert siden starten av skoleåret. Takk for hjelpen! Nå skal jeg gå og ta igjen det tapte. Lenke til kommentar
compus Skrevet 15. september 2010 Del Skrevet 15. september 2010 Beviser dette noe som helst? Lenke til kommentar
Frexxia Skrevet 15. september 2010 Del Skrevet 15. september 2010 (endret) Beviser dette noe som helst? Fordi kan man flytte integrasjonsområdet med heltallsmultipler av . Du må gjerne peke ut om det er noe galt der. Det hjelper ingen at du bare setter spørsmålstegn uten å påpeke hva som er galt. edit: For å klare oppe i det; det trenger ikke nødvendigvis å stå 2010 der, men det er det som er oppgaven. Man kan bruke samme fremgangsmåte til å vise at alle integral som går over en hel periode har identisk verdi. Endret 15. september 2010 av Frexxia Lenke til kommentar
compus Skrevet 15. september 2010 Del Skrevet 15. september 2010 (endret) Fordi kan man flytte integrasjonsområdet med heltallsmultipler av . Du må gjerne peke ut om det er noe galt der. Det hjelper ingen at du bare setter spørsmålstegn uten å påpeke hva som er galt. edit: For å klare oppe i det; det trenger ikke nødvendigvis å stå 2010 der, men det er det som er oppgaven. Man kan bruke samme fremgangsmåte til å vise at alle integral som går over en hel periode har identisk verdi. Det var nettopp begrunnelse® i retning av denne jeg bl.a savnet! Det er neppe å vente at noen gidder å lage et komplett bevisoppsett for å legge ut her, men et bevis bør vel skllle seg litt ut fra et regnestykke? edit "r"'en i "begrunnelse® ser merkelig ut men det er bare slik. Endret 15. september 2010 av compus Lenke til kommentar
Frexxia Skrevet 15. september 2010 Del Skrevet 15. september 2010 Jeg er ganske sikker på at Wingeer skjønte hva jeg gjorde uten at jeg trengte å påpeke det; overgangen er ganske triviell så fort man ser den. Da sparer jeg heller wall of text til folk som trenger det. Det er heller ingen som forventer et ekstremt vidløftig bevis på en oppgave der formuleringen sier "show that" (Se http://www.math.ntnu.no/emner/TMA4120/2010h/ovinger/ov03.pdf ). Lenke til kommentar
compus Skrevet 15. september 2010 Del Skrevet 15. september 2010 Jeg er ganske sikker på at Wingeer skjønte hva jeg gjorde uten at jeg trengte å påpeke det; overgangen er ganske triviell så fort man ser den. Du har da rett i at overgangen er triviell, (men kanskje ikke så triviell at alle interesserte forumlesere forsto den). "Show that" antyder som du sier ikke noe krav om en vidløftig utledning. Ellers var det interessant å se at oppgaven hadde tilknytning til NTNU. Jeg hadde nok tenkt at den hørte hjemme på vgs. Er dette et kurs som typisk blir tatt i 3. og 4. semester? Lenke til kommentar
Oxygen 07-12 Skrevet 16. september 2010 Del Skrevet 16. september 2010 Si jeg har en video fil med oppløsning 1280x720. Jeg ønsker å redusere oppløsningen, men vil unngå komma, kun hele tall skal brukes. Aner ikke hvilke mattebegrep som brukes. Hvordan ser jeg fra den oppløsningen og nedover hvilke oppløsninger jeg kan bruke? Lenke til kommentar
compus Skrevet 16. september 2010 Del Skrevet 16. september 2010 Si jeg har en video fil med oppløsning 1280x720. Jeg ønsker å redusere oppløsningen, men vil unngå komma, kun hele tall skal brukes. Aner ikke hvilke mattebegrep som brukes. Hvordan ser jeg fra den oppløsningen og nedover hvilke oppløsninger jeg kan bruke? Se det som en brøk som du forkorter og event. utvider. Eks: 1280/720 = 320/180 = 960/540 Lenke til kommentar
wingeer Skrevet 16. september 2010 Del Skrevet 16. september 2010 Ellers var det interessant å se at oppgaven hadde tilknytning til NTNU. Jeg hadde nok tenkt at den hørte hjemme på vgs. Er dette et kurs som typisk blir tatt i 3. og 4. semester? Avhengig av studieretning, ja. Jeg tar kurset i tredje semester, men det er noen som tar det i fjerde. Jeg er ganske sikker på at Fourier-analyse ikke har så altfor mye å gjøre på vgs. Selv om denne oppgaven kunne blitt gitt som en utfordring til elever ved videregående skole. Lenke til kommentar
Bebeluv Skrevet 16. september 2010 Del Skrevet 16. september 2010 Hvordan kan dette stykket bli brukt til ABC formelen? x^2+2x-8 --------- (brøkstrek)=0 x-1 Det er første del av oppgaven. Lenke til kommentar
Skunkish Skrevet 16. september 2010 Del Skrevet 16. september 2010 Hei jeg går på bygg og anleggsteknikk vg1, og vi har fått et prosjekt å jobbe med. Først må vi finne ut hvor i hallen hytta vi skal bygge skal stå. Vi har koordinatene til hjørne på hytta og koordinatene til to punkter i bygghallen. Kan noen hjelpe meg? Lenke til kommentar
cuadro Skrevet 16. september 2010 Del Skrevet 16. september 2010 (endret) Hvordan kan dette stykket bli brukt til ABC formelen? x^2+2x-8 --------- (brøkstrek)=0 x-1 Det er første del av oppgaven. Telleren kan faktoriseres ved bruk av ABC-formelen. Vi vet at det rasjonale uttrykket blir null dersom telleren blir null, ettersom brøken hverken kan forkortes eller er ikke-definert ved nullpunktene: Og da har du løsningene i faktoriseringen. Endret 16. september 2010 av cuadro Lenke til kommentar
Atmosphere Skrevet 16. september 2010 Del Skrevet 16. september 2010 Hmm ... La z være det komplekse tallet z=1/(1-bi)+(1/(1+i)) der b er et reellt tall. Bestem de verdier av b som gjør z til et reellt tall. Er ikke interessert i svaret, men en fremgangsmåte. Har prøvd å gange med konjugatet, og sette på fellesnevner slik at jeg får real- og imaginærdelen for seg ... Men det blir bare krøll. Lenke til kommentar
Anbefalte innlegg
Opprett en konto eller logg inn for å kommentere
Du må være et medlem for å kunne skrive en kommentar
Opprett konto
Det er enkelt å melde seg inn for å starte en ny konto!
Start en kontoLogg inn
Har du allerede en konto? Logg inn her.
Logg inn nå