Gå til innhold
Trenger du skole- eller leksehjelp? Still spørsmål her ×

Den enorme matteassistansetråden


Anbefalte innlegg

Neppe:

Har du sett over potensreglene? Det er stort sett bare rett frem anvendelse av de.

 

Pokey: Den første blir 1/6, den andre blir 2 og den tredje blir 2/3.

 

EvenruD:

2x^2 - 7x = 0 <-> x(2x - 7) = 0.

Klarer du resten selv?

 

Vet ikke om det jeg gjorde var helt på bærtur, men jeg prøvde dette:

 

Jeg ganget med X, så jeg fikk 2x^2/x=7x/x > 2x = 7 > x=7/2 eller x=0.

 

Man kan kanskje ikke gjøre det på den måten? :hmmm:

Lenke til kommentar
Videoannonse
Annonse

Hei!

 

Sitter her med en matteoppgave som jeg rett og slett ikke forstår hvordan jeg skal angripe riktig, føler den er veldig lett, men at jeg tenker veldig feil, anyways:

 

f(x)= 1/(1-x)

 

Finn ut hva f o f(x) er og bestem definisjonsmengden til grafen,

 

takker for alle svar!

Lenke til kommentar

chart?cht=tx&chl=f \circ f er funksjonen f komponert med seg selv. Det vil si at du skal sette resultatet av å regne ut f(x), inn i f: chart?cht=tx&chl=(f \circ f)(x) = f(f(x)). Begynn innerst og gå utover.

 

chart?cht=tx&chl=f(f(x)) = f\left(\frac{1}{1-x}\right)

 

Nå er chart?cht=tx&chl=\frac{1}{1-x} argument til funksjonen f. Da setter du dette inn for x i uttrykket for f.

 

chart?cht=tx&chl=f\left(\frac{1}{1-x}\right) = \frac{1}{1-\frac{1}{1-x}}

 

Dette uttrykket kan du pynte en del på.

 

For definisjonsmengden til chart?cht=tx&chl=f \circ f er det to krav: chart?cht=tx&chl=x \in D_f og chart?cht=tx&chl=f(x) \in D_f. I tillegg må selvsagt eventuelle nye ulovlige x-verdier i uttrykket til chart?cht=tx&chl=f \circ f taes bort.

Lenke til kommentar

Det som selvfølgelig da er interessant er om du komponerer funksjonen med seg selv n ganger, og lar n gå mot uendelig. Konvergerer det?

 

Vet ikke om det jeg gjorde var helt på bærtur, men jeg prøvde dette:

 

Jeg ganget med X, så jeg fikk 2x^2/x=7x/x > 2x = 7 > x=7/2 eller x=0.

 

Man kan kanskje ikke gjøre det på den måten? :hmmm:

Ikke helt på bærtur. Bare litt. Du mener kanskje at du deler med x? Ser du hva som når du kommer frem til at x=0? Er dette lov?

Lenke til kommentar

Hei

 

Sitter litt fast på en oppgave hvor vi skal få riktig antall signifikante siffer og enhet:

(3,14m x 2,4367m)-2,34m =

 

jeg multipliserer først det inne i parantesen, men da får jeg jo svare i kvadratmeter, men jeg kan vell ikke subtrahere kvadratmeter og meter. Noen som vet hva jeg kan gjøre? :S

Lenke til kommentar

Det som selvfølgelig da er interessant er om du komponerer funksjonen med seg selv n ganger, og lar n gå mot uendelig. Konvergerer det?

 

Vet ikke om det jeg gjorde var helt på bærtur, men jeg prøvde dette:

 

Jeg ganget med X, så jeg fikk 2x^2/x=7x/x > 2x = 7 > x=7/2 eller x=0.

 

Man kan kanskje ikke gjøre det på den måten? :hmmm:

Ikke helt på bærtur. Bare litt. Du mener kanskje at du deler med x? Ser du hva som når du kommer frem til at x=0? Er dette lov?

 

Ja mente at jeg delte med X. Var noe trøtt i går kveld :p

 

Men det blir feil eller hva?

Lenke til kommentar

Gresskar:

Noe som er minst like viktig som signifikante siffer o.l er å kunne konvertere enheter. Det er det du må gjøre.

 

EDIT:

Jeg leste kilometer i et sekund. Glem hele kommentaren.

 

EvenruD:

Ja, siden divisjon med 0 ikke er definert blir dette feil. Du kan for øvrig flytte alt over på en side, for så å faktorisere ut en x. Da får du:

 

x(2x-7)=0

 

Vi vet at om et produkt av to faktorer skal bli null må den ene, eller begge være lik null. For x=0 ser vi klart at ligningen stemmer. Vi ser nu når den andre faktoren er null, altså:

2x-7=0 <-> x=7/2. Hvilket er de to løsningene til den opprinnelige ligningen. Skjønner? :)

Endret av wingeer
Lenke til kommentar

Det er feil i oppgaver Gresskar; den er ikke dimensjonsmessig homogen. Det gir ingen mening å blande kvadratmeter og meter.  

 

Ja, det var det jeg også tenkte. Har jo aldri lært å konvertere meter til kvadratmeter eller omvent :S Da er det sikkert feil i oppgaven. Takk for svar :)

Lenke til kommentar

Eg treng litt hjelp med dette likningssystemet.

 

Eg har:

 

chart?cht=tx&chl=y^2-x^2=8 \\ y^2+x=10

 

Og skal finna alle kombinasjonar av y og x som oppfyller krava.

 

Eg finn eit utrykk for y² utrykt ved x i den øvre linja:

 

chart?cht=tx&chl=y^2=8+x^2

 

Og set det så inn i den nedre linja:

 

chart?cht=tx&chl=8+x^2+x=10 \\ x^2+x-2=0 \\(x+2)(x-1)=0 \\ x=-2\qquad ,\qquad x=1

 

Og då har eg to løysningar for x. Så må eg finna y. Eg finn x utrykt ved y i den nedre linja:

 

chart?cht=tx&chl=x=10-y^2

 

Og set det inn i den øvre linja:

 

chart?cht=tx&chl=y^2-(10-y^2)^2=10

 

Eg håpar på at alt hittil er korrekt, men herfrå står eg fast. Korleis reknar eg ut -(10-y²)²?

Lenke til kommentar

Eg stussar litt på minusteiknet. Vert det altså slik som dette?

 

chart?cht=tx&chl=y^2-(100-20y^2+y^4)-10 \\ y^2-100+20y^2-y^4-10 \\ -y^4+21y^2-110 \\ y^4-21y^2+110

 

Og så bruker eg abc-formelen for u der u=y², med a=1, b=-21 og x=110? :hmm:

 

Eller meinte du at eg skal bruka y-definisjonen min for å få:

 

chart?cht=tx&chl=8+x^2 -(10-8+x^2 )^2-10=0?

Endret av mosleth
Lenke til kommentar

Det kan du absolutt gjøre, og det er riktig utregnet ja.

 

Men hvorfor gjøre det så tungvint når du allerede har et enklere uttrykk chart?cht=tx&chl=y^2 = 8 + x^2? Det kan du jo til og med løse uten verken abc-formel eller annet.

 

edit: du har jo også at chart?cht=tx&chl=y^2 = 10 - x som jo er enda litt enklere...

 

edit2: Nei, jeg mener at du skal bruke y-definisjonen til å finne y.

 

chart?cht=tx&chl=y^2 = 10 - x

 

chart?cht=tx&chl=y^2 = 10 - (-2) \ , \ y^2 = 10 - 1

Endret av Jaffe
Lenke til kommentar

Hei igjen, er det noen som har lyst til å hjelpe gruppen min litt videre? :p

 

Det gjelder oppgave 2.7 på oppgavearket jeg legger ved. Den med alle de potensene der.

 

Er det riktig at man bare skal bruke reglene a^p x a^q = a^p+q og (a^p)^q=a^p x q og a^p/a^q = a^p-q?

 

Også trekke alt sammen og forenkle?

 

Kan det stemme at oppgave a får dette svaret:

 

1/18 x a x b^-4?

2.7.pdf

Lenke til kommentar

Hei.

 

En buss starter fra ro med aks. 0.75 m/s^2. Grete løper etter bussen med fart 8 m/s, og hun var 17.5m bak den da de begge startet.

 

a) hvor lang tid bruker Greite på å ta igjen bussen?

 

Jeg løste det slik:

 

17.5+(0.75x)=8x

 

Er dette riktig metode? Hadde satt stor pris på om noen viste meg hvordan jeg løste det om jeg har gjort feil. Takk på forhånd :)

Lenke til kommentar

Opprett en konto eller logg inn for å kommentere

Du må være et medlem for å kunne skrive en kommentar

Opprett konto

Det er enkelt å melde seg inn for å starte en ny konto!

Start en konto

Logg inn

Har du allerede en konto? Logg inn her.

Logg inn nå
×
×
  • Opprett ny...