Gå til innhold
Trenger du skole- eller leksehjelp? Still spørsmål her ×

Den enorme matteassistansetråden


Anbefalte innlegg

Vi har en kabel som strekker seg fra B(0,0,1) til A(6,7,7).

 

Skal strekke en kortes mulig ledningfra C(8,1,1) til kabelen, hvor kort kan ledningen være?

 

Innbiller meg at ledningen fra C bør stå normalt på AB, men usikker på hvordan jeg skal finne linja som står normalt på AB?

 

Har ennå ikke fått til denne, men spør om noe annet til samme oppgave også:

 

Skal forklare hvorfor punktet T(6t, 7t, 1+6t) ligger på kabelen, når t er mellom 0 og 1. Tenker at jeg da bare kan vise at AB er parallell med AT, men pga. denne t-en greier jeg ikke å vise det helt. Noen forslag?

 

Du er inne på noe. T(x,y,z). Du skal finne x, y og z. Hvis T skal ligge på kablen må man ha

 

p><p>

 

T(6t,7t,1+6t) ligger på linja gjennom A og B for en hver t og ligger mellom A og B (altså på kabelen) for t mellom 0 og 1

 

Du kan bruke dette i den andre delen av oppgaven. Det punktet som jeg kalte S kan like gjerne være T. Du må finne den t som gjør at TC er vinkelrett på linja gjennom AB. Dersom denne t viser seg å ikke være mellom 0 og 1 så vil korteste avstand mellom c og kabelen AB være til en av endepunktene og ikke til et punkt mellom A og B.

 

Utrolig hvordan jeg skulle slite med denne altså. Får fortsatt ikke det til - svarene mine blir gale.

 

Hvis TC er [8-6t, 1-7t, 6t] og dette ganget med BA skal bli 0 får jeg at t= 5/11, hvis jeg har gjort rett (og ikke rotet med fortegn *host* ).

 

Da skal jeg vel bare kunne sette denne t verdien inn i TC og finne lengden av TC? Men svaret blir altså feil. Og avstanden til endepunktene er også feil.

 

Edit: Believe it or not, jeg fikk det til! Hadde rotet med et bittelite tegn som vanlig. Tusen takk for hjelpa uansett, det hjalp meg godt på vei...:)

Vanskelig å si hva du gjør galt når du ikke viser hva du gjør. Men jeg får ikke 5/11 for t så du kan kanskje sjekke over hva du gjør der.

 

Jeg fikk det som sagt til nå med t=5/11, og svaret stemmer nøyaktig med fasit, så da MÅ det jo være rett?

Lenke til kommentar
Videoannonse
Annonse

så fint da.... da er det jeg som har gjort en feil. Det er fort gjort at det sniker seg inn litt feil, og for oss her på forumet er det veldig vanskelig å kontrollere svareen vi får mot en fasit vi ikke har ;)

 

Foresten festelig dette med edit; når noen editerer en post som blir sistert, men som det ikke er trykt send på enda så kommer editen med i sitatet. Posten din var nemmelig ikke editert når jeg begynt å svare :) disse forumene begynner å bli fantastisk avanserte.

Lenke til kommentar
kan noen gi meg en rask forklaring på regler ved faktorisering av polynomer? (helt enkelt)

Om du har eit polynom, og a er ei rot i polynomet, vil (x-a) vere ein faktor i polynomet. Til dømes:

 

mimetex.cgi?P(x)=x^2-2x-8

Å finne røtter av andregradspolynom er enkelt, det er berre å nytte andregradsformelen (abc-formelen). Røttene til dette er x=4 og x=-2, og det kan dermed skrivast om slik:

mimetex.cgi?P(x)=x^2-2x-8=(x-4)(x-(-2))=(x-4)(x+2)

 

 

Har du eit polynom av høgare grad enn 2 er det ikkje nokon enkel måte å finne røttene direkte, men det nokre ting du kan gjere:

-I nokon tilfelle er det mogeleg å prøve seg fram (med låge heiltal som t.d. x=1 og x=-1) for å finne ei rot, og kjenner du ei rot i t.d. eit tredjegradspolynom kan du bruke polynomdivisjon og få eit andregradspolynom som kan faktoriserast vidare.

-Er det ikkje noko konstantledd kan du faktorisere ut x fyrst, og faktorisere «resten» ved å finne røttene.

Lenke til kommentar

mimetex.cgi?P(x)=x^2-2x-8

 

Om man tar eksemplet over så er det lett og faktorisere

slike polynomer i hodet.

 

dog bare på formen chart?cht=tx&chl= x^2 \pm bx \pm c

 

Om man tar eksemplet til Torbjørn

Først ser du på siste leddet, hvilket hele tall ganget sammen girchart?cht=tx&chl=\pm c ?

I vårt tilfelle er c = -8

Etter rask hoderegning kommer vi frem til

 

chart?cht=tx&chl=1\,*\,-8\, = \, -8\,

 

chart?cht=tx&chl=-1\,*\,8\, = \, -8\,

 

chart?cht=tx&chl=-4\,*\,2\, = \, -8\,

 

chart?cht=tx&chl= 4\,*\,-2\, = \, -8\,

 

 

Neste spørsmål, hvilke av disse tallene gir chart?cht=tx&chl=\pm b (-2) når lagt sammen ?

bare å prøve tallene fra forrige gang.

 

 

chart?cht=tx&chl= 1 \,+\, -8\, =\, -7\,

 

chart?cht=tx&chl=-1 \,+\, 8\,  =\, -7\,

 

chart?cht=tx&chl=-4 \,+\, 2\,  =\, -2\,

 

chart?cht=tx&chl= 4 \,+\, -2\,  =\,  2\,

 

 

Her kan vi se at det bare er -4 og 2 som gir riktig svar dermed er

 

chart?cht=tx&chl=P(x)=x^2-2x-8 \Rightarrow ( x - 4 ) ( x + 2 )

 

Men husk om svaret blir i brøkform, eller ikke har reelle røtter må man bruke formler snu fortegn og sette i klammer.

Endret av Nebuchadnezzar
Lenke til kommentar

EDIT: OPPGAVEN ER LØST!

 

Jeg kunne trengt hjelp til en geometrioppgave. Skal ha R1 eksamen på fredag og vi har ikke hatt tid til å gå gjennom geometri-kapittelet på skolen, så derfor prøver jeg å lære meg all geometrien nå. Håper noen kan hjelpe meg med følgende oppgave som er hentet fra coSinus R1 (Cappelen), oppgavenr: 4.230.

 

Oppgaven lyder som følger:

"Punktene A, B, C og D ligger påperiferien av en sirkel. Linjestykkene AB og CD skjærer hverandre i et punkt S. Videre er (vinkel)ASD = (vinkel)BSD = v, buen AC = a og buen BD = b.

 

Vis at ztf5m0.jpg

 

------------------------------------------------------------------------------------------

 

Jeg klarte å løse oppgaven ved hjelp av denne tråden:

Endret av Arti-Ravnos
Lenke til kommentar

Kanskje det var rotete forklart fra min side, men det å faktorisere i hodet

fungerer bare om svaret ikke er i brøkform og at svaret er reellt.

 

Slik som eksemplet ditt så er det første eksemplet i brøk form, og det andre har ikke reelle svar.

 

Personlig ser jeg alltid om jeg kan løse likningene i hodet, om ikke bruker jeg formler.

Heldigvis er mesteparten av polynomene vi regner med reelle og har hele tall.

Lenke til kommentar

Hadde R2! Ble helt redd når jeg så første del når jeg ikke bruke noen ting! Så spørs hvordan den dele gikk ja :wow:.

 

Hvis jeg driver å løse en oppgave riktig, fremgangsmåtene etc. riktig, men selvet svaret er feil! Hvor mange poeng mister jeg på en oppgave da?

 

Takk.

Lenke til kommentar
Hadde R2! Ble helt redd når jeg så første del når jeg ikke bruke noen ting! Så spørs hvordan den dele gikk ja :wow:.

 

Hvis jeg driver å løse en oppgave riktig, fremgangsmåtene etc. riktig, men selvet svaret er feil! Hvor mange poeng mister jeg på en oppgave da?

 

Takk.

 

Ingen hjelpemidler på del en? Hjælp.

 

Læreren vår har gjentatt i det uendelige at det ikke er verdens undergang om selve svaret er feil så lenge fremgangsmåten er riktig og du har vist at du har forstått oppgaven, men det er jo også forskjell på å få feil svar fordi du har glemt å skifte fortegn og få feil svar fordi du tastet litt feil på kalkulatoren.

Lenke til kommentar

Hellu, dette er en vektorligning der u og v representerer vektorer (skal egentlig ha en pil over seg):

 

u-(3-p)v = (p+4)u-6v

 

 

Kan noen vise meg hvordan man regner ut hva "p" skal være? 8D

Endret av Gormers
Lenke til kommentar

Ikke tenkt på det som vektorer. I alle fall trenger du ikke det i akkurat dette tilfellet. Hvis du ganger ut parantesene og rydder opp i likningen så kan du klare å ende opp med konstant*(u-v) på begge sider av likhetstegnet. Da er det veldig lett å se hva p må være.

Lenke til kommentar

Opprett en konto eller logg inn for å kommentere

Du må være et medlem for å kunne skrive en kommentar

Opprett konto

Det er enkelt å melde seg inn for å starte en ny konto!

Start en konto

Logg inn

Har du allerede en konto? Logg inn her.

Logg inn nå
  • Hvem er aktive   0 medlemmer

    • Ingen innloggede medlemmer aktive
×
×
  • Opprett ny...