Buddy Dakota Skrevet 17. september 2014 Del Skrevet 17. september 2014 fixxit skrev (På 17.9.2014 den 17.41): Buddy Dacote skrev (På 17.9.2014 den 14.05): Gang med den inverse til 0,448/0,894 på begge sider og trekk fra Fb på begge sider? Del på det du har igjen av faktor foran Fb, så står den alene. Hvis jeg trekker fra Fb på begge sider står jeg ikke igjen med ingen ukjente da? Nei, fordi det er ikke nøyaktig én Fb på venstre siden av ligningen etter at du har ganget med på begge sider. Husk forøvrig at 1 Lenke til kommentar
fixxit Skrevet 17. september 2014 Del Skrevet 17. september 2014 Buddy Dacote skrev (På 17.9.2014 den 20.51): fixxit skrev (På 17.9.2014 den 17.41): Buddy Dacote skrev (På 17.9.2014 den 14.05): Gang med den inverse til 0,448/0,894 på begge sider og trekk fra Fb på begge sider? Del på det du har igjen av faktor foran Fb, så står den alene. Hvis jeg trekker fra Fb på begge sider står jeg ikke igjen med ingen ukjente da? Nei, fordi det er ikke nøyaktig én Fb på venstre siden av ligningen etter at du har ganget med på begge sider. Husk forøvrig at så da får jeg noe slikt da? Men du har ikke noe svar på hvorfor jeg kan si 1/0,894*(0,448fb+8,75)?? Forresten hjertelig takk nå forstod jeg faktisk hva jeg gjorde. Lenke til kommentar
Imlekk Skrevet 18. september 2014 Del Skrevet 18. september 2014 Jeg har et lite spørsmål om formulering av spørsmål, og tilhørende svar. Det er ei venninne som jeg hjelper med matematikkleksene, og hun fikk en oppgave om å finne den største mulige verdien av som tilfredsstiller en ulikhet. For å gi et trivielt eksempel så tenk på denne: Siden det er en ulikhet hvor relasjonen er mindre enn () og ikke mindre enn eller lik () så er det ikke et enkelt tall som tilfredsstiller denne ulikheten. Hvis man foreslår en løsning, e.g. , så vil man alltid kunne finne en ny løsning som er nærmere ved for eksempel å ta . Vi vet også at ikke er gyldig, da det er det samme som . Så spørsmålet er da følgende: Er det nå slik at problemet ikke har en unik løsning, eller er det bare jeg som kverulerer overdrevent mye på spørsmålsformuleringen? Lenke til kommentar
the_last_nick_left Skrevet 18. september 2014 Del Skrevet 18. september 2014 Det er ikke du som kverulerer, oppgaven haringen løsning. 1 Lenke til kommentar
Imlekk Skrevet 18. september 2014 Del Skrevet 18. september 2014 the_last_nick_left skrev (På 18.9.2014 den 15.08): Det er ikke du som kverulerer, oppgaven haringen løsning. Takk for bekreftelsen Lenke til kommentar
knopflerbruce Skrevet 18. september 2014 Del Skrevet 18. september 2014 Du kunne jo alltids satt det opp som en grenseverdi, f.eks. 1- lim(n->uendelig) 1/n Lenke til kommentar
Imlekk Skrevet 18. september 2014 Del Skrevet 18. september 2014 knopflerbruce skrev (På 18.9.2014 den 18.58): Du kunne jo alltids satt det opp som en grenseverdi, f.eks. 1- lim(n->uendelig) 1/n Hmm, kan ikke se hvordan funker. Ja, det gir oss en øvre skranke for , men denne øvre skranken er fortsatt ikke en gyldig verdi for . Lenke til kommentar
knopflerbruce Skrevet 19. september 2014 Del Skrevet 19. september 2014 (endret) Imlekk skrev (På 18.9.2014 den 23.20): knopflerbruce skrev (På 18.9.2014 den 18.58): Du kunne jo alltids satt det opp som en grenseverdi, f.eks. 1- lim(n->uendelig) 1/n Hmm, kan ikke se hvordan funker. Ja, det gir oss en øvre skranke for , men denne øvre skranken er fortsatt ikke en gyldig verdi for . Når du begynner med skrankesnakk så skal jeg ikke overprøve deg det var bare et forslag, så helt greit at det blir nedsablet hvis det ikke er korrekt Endret 19. september 2014 av knopflerbruce Lenke til kommentar
El cartucho Skrevet 19. september 2014 Del Skrevet 19. september 2014 Hadde satt pris på hjelp med denne. Burde vært en smal sak, men får det bare ikke til å stemme. Vis at: kan skrives som ved å utnytte og Har prøvd forskjellig, men nærmeste jeg kommer er: Lenke til kommentar
gaffel1 Skrevet 19. september 2014 Del Skrevet 19. september 2014 Hvordan får man 0,116 = 0,08 + [E (rm) - 0,08] * 0,6 til å bli E (rm) = 0,014 ? Lenke til kommentar
Torbjørn T. Skrevet 19. september 2014 Del Skrevet 19. september 2014 (endret) Du får ikkje det, men du kan få E(rm) = 0.14. http://www.wolframalpha.com/input/?i=solve+0.116+%3D+0.08+%2B+%5Bx+-+0.08%5D+*+0.6 Endret 19. september 2014 av Torbjørn T. Lenke til kommentar
gaffel1 Skrevet 19. september 2014 Del Skrevet 19. september 2014 Da var det nok liten feil i fasiten her. Men har du utregningen til dette? Skjønner ikke hvordan de kommer frem til 0,14. Lenke til kommentar
matte geek Skrevet 19. september 2014 Del Skrevet 19. september 2014 For hvilken verdier av x er: f(x)=f(-x)?. Noen som hvordan man skal tenke det frem. Er målet at venstre-siden skal være lik høyre siden? Lenke til kommentar
cuadro Skrevet 19. september 2014 Del Skrevet 19. september 2014 (endret) Eksempel: Hva kjennetegner denne funksjonen? Hint: Vis skjult innhold Den speiler om y-asken, hvilket betyr at funksjonen har den samme verdien for positive og negative x-verdier. Edit: Jeg ser nå at du skriver "for hvilke verdier av x[..]". Spørsmålet er igrunnen meningsløst før man definerer funksjonen ift. x, slik jeg kan se. Er dette den fulle oppgaveteksten, eller om den eventuelt er formulert annerledes? Endret 19. september 2014 av cuadro Lenke til kommentar
Imlekk Skrevet 19. september 2014 Del Skrevet 19. september 2014 El cartucho skrev (På 19.9.2014 den 13.04): Hadde satt pris på hjelp med denne. Burde vært en smal sak, men får det bare ikke til å stemme. Vis at: kan skrives som ved å utnytte og Har prøvd forskjellig, men nærmeste jeg kommer er: Okay, så du ser i svaret her at du ikke ønsker å ha eller som noen faktorer. Så la oss kvitte oss med dem, og se hvor vi ender. Vi får da Hvis min hoderegning etter fem-seks øl litt før 2 på natta er korrekt, så skal du få svaret du er ute etter når du løser den likningen for . Lenke til kommentar
D3f4u17 Skrevet 19. september 2014 Del Skrevet 19. september 2014 (endret) El cartucho skrev (På 19.9.2014 den 13.04): Hadde satt pris på hjelp med denne. Burde vært en smal sak, men får det bare ikke til å stemme. Vis at: kan skrives som ved å utnytte og Har prøvd forskjellig, men nærmeste jeg kommer er: Sett inn for , så løser du med hensyn på . Edit: Noen kom meg visst i forkjøpet. Endret 19. september 2014 av D3f4u17 Lenke til kommentar
Imlekk Skrevet 19. september 2014 Del Skrevet 19. september 2014 D3f4u17 skrev (På 19.9.2014 den 23.52): Edit: Noen kom meg visst i forkjøpet. Lenke til kommentar
matte geek Skrevet 20. september 2014 Del Skrevet 20. september 2014 cuadro skrev (På 19.9.2014 den 23.22): Eksempel: Hva kjennetegner denne funksjonen? Hint: Vis skjult innhold Den speiler om y-asken, hvilket betyr at funksjonen har den samme verdien for positive og negative x-verdier. Edit: Jeg ser nå at du skriver "for hvilke verdier av x[..]". Spørsmålet er igrunnen meningsløst før man definerer funksjonen ift. x, slik jeg kan se. Er dette den fulle oppgaveteksten, eller om den eventuelt er formulert annerledes? Det er den fulle oppgaveteksten. Lenke til kommentar
matte geek Skrevet 20. september 2014 Del Skrevet 20. september 2014 cuadro skrev (På 19.9.2014 den 23.22): Eksempel: Hva kjennetegner denne funksjonen? Hint: Vis skjult innhold Den speiler om y-asken, hvilket betyr at funksjonen har den samme verdien for positive og negative x-verdier. Edit: Jeg ser nå at du skriver "for hvilke verdier av x[..]". Spørsmålet er igrunnen meningsløst før man definerer funksjonen ift. x, slik jeg kan se. Er dette den fulle oppgaveteksten, eller om den eventuelt er formulert annerledes? Det er den fulle oppgaveteksten. Lenke til kommentar
the_last_nick_left Skrevet 20. september 2014 Del Skrevet 20. september 2014 Men du har vel fått vite hva funksjonen er? Lenke til kommentar
Anbefalte innlegg
Opprett en konto eller logg inn for å kommentere
Du må være et medlem for å kunne skrive en kommentar
Opprett konto
Det er enkelt å melde seg inn for å starte en ny konto!
Start en kontoLogg inn
Har du allerede en konto? Logg inn her.
Logg inn nå