Vintersola Skrevet 13. mai 2013 Del Skrevet 13. mai 2013 Takk begge to! Har ikke glemt at det er snakk om radianer, men jeg synes det er vanskelig å se for meg hva som ligger hvor på enhetssirkelen. Synes også radianer er litt..abstrakt kanskje? Når jeg ser -(pi/4), så sier det meg i utgangspunktet ingenting.. Lenke til kommentar
cuadro Skrevet 13. mai 2013 Del Skrevet 13. mai 2013 Dette er ekstremt småpirk, men det er pi(), altså med en tom parantes bak. Gir 15 desimaler av pi, så det burde holde. Aha! Alltid godt å vite. Lenke til kommentar
cuadro Skrevet 13. mai 2013 Del Skrevet 13. mai 2013 (endret) Takk begge to! Har ikke glemt at det er snakk om radianer, men jeg synes det er vanskelig å se for meg hva som ligger hvor på enhetssirkelen. Synes også radianer er litt..abstrakt kanskje? Når jeg ser -(pi/4), så sier det meg i utgangspunktet ingenting.. Det er noe trist over at vi siden barneskolen blir nærmest tvunget inn i et slikt perspektiv hvor "grader" er det eneste som gir mening mellom vinkler. En grad er en 360-del av en sirkel. Radianer er et litt annet mål på vinklene i en sirkel: Dersom en sirkel har radiusen r=1, så vet vi av formel at omkretsen er 2pi*r = 2pi.* Når du leser -(pi/4) vil vi at du skal tenke dette som en bevegelse rundt i omkretsen av sirkelen. Hele omkretsen er 2pi, mens du beveger deg |pi/4|. Regner vi litt her, så finner vi at du beveger deg |(pi/4)|/2pi = |1/8| (=45grader) av hele omkretsen. Legger vi til fortegnet, så ser vi at vi beveger oss i det vi anser som "negativ" retning (med klokken). Dersom du tegner denne sirkelen nå, og setter et punkt på periferien av sirkelen der du har beveget deg 1/8 av sirkelens omkrets rundt med klokken (du "begynner" der x-aksen krysser periferien, med origo av koordinatsystem i midten av sirkelen), dra så en linje opp til x-aksen, og en bort til y-aksen. Lenden fra origo til krysningen mellom linjen du nå dradde og x-linjen heter cosinus-verdien (til -pi/4). Lengden fra origo og til krysningen mellom linjen du dradde og y-linjen heter sinus-verdien (til -pi/4). Disse verdiene kan du enten "se" på hvor linjene krysser, eller regne ut ved å studere den likesidete trekanten. * Denne formelen vil du kunne bevise når du har lært om derivasjon. Edit, la ved bilde Endret 13. mai 2013 av cuadro Lenke til kommentar
Skyggedans Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 Sykt viktig spørsmål Ok, vi har en formel for stillingsenergi som er Es= mgh Men jeg har en oppgave som lyder følgende, du har 1L cola med 1800000J, som alt gjøres om til stillingsenergi. Hvor høyt kan du løfte en jente på 50 kg med den energien? Jeg regner med at jeg holder meg til SI-enhetene J og kg. Gjør jeg da om på formelen til h= Es/ m *g Altså da får jeg jo høyde = 1800000J / 50kg *9,81 som er et forferdelig høyt tall.. Hva gjorde jeg feil? Lenke til kommentar
Henrik™ Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 (endret) Jeg fikk ~3670 m (husk at du også skal dele på 9.81, ikke gange. Det kan se ut til at du ganger med 9.81). Det er et høyt tall, ja, men fortsatt riktig. Det er veldig mye energi i en liter cola. Endret 14. mai 2013 av Henrik™ Lenke til kommentar
Skyggedans Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 (endret) Jeg fikk ~3670 m (husk at du også skal dele på 9.81, ikke gange. Det kan se ut til at du ganger med 9.81). Det er et høyt tall, ja, men fortsatt riktig. Det er veldig mye energi i en liter cola. Jeg fant ut svaret, rett etter jeg spurte her som var 3669,72 m. Feilen jeg gjorde var feil egentlig at jeg brukte h= Es /m *g når det egentlig var h= Es/(m*g) Endret 14. mai 2013 av Skyggedans Lenke til kommentar
Jaffe Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 Bruk regelen . Eller med andre ord: Du kan dele 8 på 5 og så opphøye i x. Lenke til kommentar
Mladic Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 (endret) Så svaret er bare: ? Hva skal man gjøre hvis det er uttrykk som er opphøyd i x på begge sider av likningssettet? Endret 14. mai 2013 av Eksboks Lenke til kommentar
Benjamin Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 Så svaret er bare: ? Ja. 1 Lenke til kommentar
morgan_kane Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 (endret) Hvorfor blir divergensen til vektofeltet f(x,y)= [x, y] lik null=0? Endret 14. mai 2013 av morgan_kane Lenke til kommentar
lilepija Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 Noen som vil fortelle hvorfor vi egentlig har co, sin, tan og cot? Holder på med å dividere osv, med disse. Hvilke funksjon har de egentlig i daglig livet? Pytagoras er greit... Lenke til kommentar
Benjamin Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 (endret) Hvorfor blir divergensen til vektofeltet f(x,y)= [x, y] lik null=0? Det er mulig jeg ikke kan dette helt godt nok, men mener du f(x,y) = xi + yj ? Er lik null=0 skjønte jeg ikke helt... Edit: Jeg ser at wingeer kom til samme svar som meg, så muligens feil i fasit? Noen som vil fortelle hvorfor vi egentlig har co, sin, tan og cot? Holder på med å dividere osv, med disse. Hvilke funksjon har de egentlig i daglig livet? Pytagoras er greit... Det spørs hva du legger i dagliglivet, du trenger ingen trigonometriske funksjoner for å kjøpe brød i butikken. Skal du derimot ta høyere utdannelse som feks ingeniør, så er disse funksjonene helt grunnleggende verktøy som brukes i det meste, men så klart også andre som bruker disse. Et enkelt eksempel på sinus i hverdagen er vekselspenningen som alle har i veggen, denne har form som en sinus-kurve. Endret 14. mai 2013 av Benjamin 1 Lenke til kommentar
wingeer Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 Hvorfor blir divergensen til vektofeltet f(x,y)= [x, y] lik null=0? Den blir ikke det. Den blir 2. Lenke til kommentar
lilepija Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 Det er mulig jeg ikke kan dette helt godt nok, men mener du f(x,y) = xi + yj ? Er lik null=0 skjønte jeg ikke helt... Edit: Jeg ser at wingeer kom til samme svar som meg, så muligens feil i fasit? Det spørs hva du legger i dagliglivet, du trenger ingen trigonometriske funksjoner for å kjøpe brød i butikken. Skal du derimot ta høyere utdannelse som feks ingeniør, så er disse funksjonene helt grunnleggende verktøy som brukes i det meste, men så klart også andre som bruker disse. Et enkelt eksempel på sinus i hverdagen er vekselspenningen som alle har i veggen, denne har form som en sinus-kurve. Ja, var som inceniør jeg tenkte på. Om jeg bare skal handle brød, hadde jeg ikke regner med dette Men jeg forstår ikke helt hvorfor de bruker sinus kurve og selve handlingen med disse trigonometriske funksjonene. Holder på med å deriver, legge sammen osv med disse funskjonene, men er helt fast... Lenke til kommentar
Frexxia Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 (endret) Vel, du har f.eks http://en.wikipedia.org/wiki/Fourier_analysis edit: Her er sin/cos "skjult", men om du ikke vet hva komplekse tall er så kan du bare ta meg på ordet at . edit2: Selvsagt kommer også vinkler opp overalt, og disse er jo tett knyttet til de trigonometriske funksjonene. I fysikk f.eks finner man ofte bidraget til noe i en gitt retning. Kopiert rett fra wikipedia: Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year. Endret 14. mai 2013 av Frexxia Lenke til kommentar
Benjamin Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 Ja, var som inceniør jeg tenkte på. Om jeg bare skal handle brød, hadde jeg ikke regner med dette Men jeg forstår ikke helt hvorfor de bruker sinus kurve og selve handlingen med disse trigonometriske funksjonene. Holder på med å deriver, legge sammen osv med disse funskjonene, men er helt fast... Som sagt så brukes det i veldig mye, på det nivået du er nå så er det fortsatt litt tidlig for mange konkrete eksempler. Frexxia nevner også noen. Selv er jeg snart ferdig med første året på siv.ing. i elektronikk. Der har vi blant annet brukt Fourier-analyse som Frexxia linker til for å addere mange sinuskurver til å bli feks en firkantpuls. Lenke til kommentar
Mladic Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 (endret) Av en eller annen grunn får jeg ikke til dette stykket. HJEELP? Endret 14. mai 2013 av Eksboks Lenke til kommentar
wingeer Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 Som sagt så brukes det i veldig mye, på det nivået du er nå så er det fortsatt litt tidlig for mange konkrete eksempler. Frexxia nevner også noen. Selv er jeg snart ferdig med første året på siv.ing. i elektronikk. Der har vi blant annet brukt Fourier-analyse som Frexxia linker til for å addere mange sinuskurver til å bli feks en firkantpuls. Veldig, veldig mange. Uendelig mange, faktisk. Kan også være viktig å presisere at man tilnærmer, ettersom diskontinuitet og Gibbs fenomen, osv. Eksboks: Del med 3000 på begge sider og opphøy begge sider med 10 for å bli kvitt lg. Da sitter du igjen med en lineær ligning. Lenke til kommentar
Vintersola Skrevet 14. mai 2013 Del Skrevet 14. mai 2013 Induksjonsbevis blir alltid presentert så uoversiktlig. Vis at det gjelder for n=1. Det er greit. Anta at det gjelder for n=k. Med andre ord, anta at: . Vi ønsker da å vise at det må gjelde for n=k+1 også, med andre ord at: . Vi ser først på venstresiden av likhetene. For å komme fra til ser vi at vi kan legge til . Men siden dette er en likhet må vi legge det til på begge sider. Vi får da . Trekker vi sammen høyresiden med fellesnevner, så får vi resultatet vi ønsket å bevise. Dette er gyldig siden vi har brukt antagelsen om at det stemmer for n=k og vist med gyldige aritmetiske operasjoner (+) at det da også holder for n=k+1. Endring: Skrev av oppgaven feil. Hvordan ser du dette? Hva mener du med dette? Hvordan er det en likhet? Og hvordan gjør du dette? Jeg skjønner fortsatt ikke denne oppgaven.. Lenke til kommentar
Anbefalte innlegg
Opprett en konto eller logg inn for å kommentere
Du må være et medlem for å kunne skrive en kommentar
Opprett konto
Det er enkelt å melde seg inn for å starte en ny konto!
Start en kontoLogg inn
Har du allerede en konto? Logg inn her.
Logg inn nå